access icon free Zero-voltage switching current-fed flyback converter for power factor correction application

Previous research on flyback power factor correction (PFC) converters exposes some inherent shortcomings, such as high-voltage spike on the metal oxide semiconductor field effect transistor (MOSFET), frequency variation, pulsating input current and hard switching operation. This study presents a new topology for PFC applications named zero-voltage switching (ZVS) current-fed flyback converter to not only achieve spike-free voltage, ZVS on the MOSFETs, but also improve the input current quality. By utilising quasi-z-source configuration, the voltage spikes on the MOSFET are effectively eliminated using only a capacitive clamper, resulting in no-loss consumption. Low-voltage MOSFETs with low on-resistance Rds (on) are used to improve the efficiency. In addition, by taking advantage of the average current mode control with the continuous conduction mode operation, the input current perfectly tracks the input voltage. To demonstrate the circuit's feasibility, a 100–140 V input, 28 V/5 A output laboratory prototype was built. The experimental results showed that the proposed topology completely eliminated the voltage spikes on the MOSFETs. The efficiency was improved using low Rds (on) MOSFETs, and ZVS was achieved. In summary, the proposed topology meets the high efficiency and high-input current quality requirements.

Inspec keywords: switching convertors; power factor correction; power MOSFET; zero voltage switching

Other keywords: ZVS current-fed flyback converter; high spike-free voltage; hard switching operation; continuous conduction mode operation; capacitive clamper; frequency variation; voltage 100 V to 140 V; voltage 28 V; low-voltage MOSFET; metal oxide semiconductor field effect transistor; average current mode control; zero-voltage switching current-fed flyback converter; pulsating input current; current 5 A; PFC converters; flyback power factor correction converters; input current quality; quasiZ-source configuration

Subjects: Power semiconductor devices; Insulated gate field effect transistors; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 13. Tang, W., Jiang, Y., Hua, G.C., Lee, F.C., Cohen, I.: ‘Power factor correction with flyback converter employing charge control’. Proc. Eighth Annual Applied Power Electronics Conf. Exposition, March 1993, pp. 293298.
    2. 2)
      • 2. Hung-Liang, C., Ping-Wen, W.: ‘A novel single-stage high-power-factor electronic ballast for metal-halide lamps free of acoustic resonance’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 14801488 (doi: 10.1109/TPEL.2010.2082563).
    3. 3)
      • 3. Chae, S.Y., Hyun, B.C., Agarwal, P., Kim, W.S., Cho, B.H.: ‘Digital predictive feed-forward controller for a DC–DC converter in plasma display panel’. Proc. Twenty Second Annual IEEE Applied Power Electronics Conf. (APEC 2007), 1 March 2007, pp. 894898.
    4. 4)
      • 1. Shiguo, L., Weihong, Q., Wenkai, W., Batarseh, I.: ‘Flyboost power factor correction cell and a new family of single-stage AC/DC converters’, IEEE Trans. Power Electron., 2005, 20, (1), pp. 2534 (doi: 10.1109/TPEL.2004.839876).
    5. 5)
      • 10. Hsing-Fu, L., Lon-Kou, C.: ‘Flexible and low cost design for a flyback AC/DC converter with harmonic current correction’, IEEE Trans. Power Electron., 2005, 20, (1), pp. 1724 (doi: 10.1109/TPEL.2004.839879).
    6. 6)
      • 11. Jong-Jae, L., Jung-Min, K., Eung-Ho, K., Woo-Young, C., Bong-Hwan, K.: ‘Single-stage single-switch PFC flyback converter using a synchronous rectifier’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 13521365 (doi: 10.1109/TIE.2007.911908).
    7. 7)
      • 17. Yu, T., Shaojun, X., Chaohua, Z.: ‘Z-source AC/AC converters solving commutation problem’, IEEE Trans. Power Electron., 2007, 22, (6), pp. 21462154 (doi: 10.1109/TPEL.2007.909235).
    8. 8)
      • 19. Galigekere, V.P., Kazimierczuk, M.K.: ‘Analysis of PWM Z-source DC–DC converter in CCM for steady state’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (4), pp. 854863 (doi: 10.1109/TCSI.2011.2169742).
    9. 9)
      • 12. Yu-Kang, L., Jing-Yuan, L., Chao-Fu, W., Chien-Yu, L.: ‘Analysis and design of a dual-mode flyback converter’. IEEE Int. Conf. on Sustainable Energy Technologies (ICSET), December 2010, pp. 13.
    10. 10)
      • 8. Woo-Young, C., Jae-Yeon, C.: ‘A novel single-stage AC–DC converter to supply sustain power for plasma display panels’, J. Disp. Technol., 2011, 7, (9), pp. 494502 (doi: 10.1109/JDT.2011.2141113).
    11. 11)
      • 16. Honnyong, C., Peng, F.Z., Dongwook, Y.: ‘Z-source resonant DC–DC converter for wide input voltage and load variation’. Proc. 2010 Int. Power Electronics Conf. (IPEC), June 2010, pp. 9951000.
    12. 12)
      • 14. Jun-Young, L., Gun-Woo, M., Myung-Joong, Y.: ‘Design of a power-factor-correction converter based on half-bridge topology’, IEEE Trans. Ind. Electron., 1999, 46, (4), pp. 710723 (doi: 10.1109/41.778222).
    13. 13)
      • 18. Quang Trong, N., Alam, M.M., Huang-Jen, C., Yu-Kang, L.: ‘Single-stage quasi z-source flyback power factor correction converter’. Int. Conf. on Anti-Counterfeiting, Security and Identification (ASID), 2012, pp. 15.
    14. 14)
      • 7. Hao, M., Yue, J., Ye, X.: ‘Design and analysis of single-stage power factor correction converter with a feedback winding’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14601470 (doi: 10.1109/TPEL.2009.2037739).
    15. 15)
      • 15. Chiu, H.-J., Lo, Y.-K., Cheng, S.-J., et al: ‘A single-stage LED lamp driver with low DC bus voltage for general lighting applications’, Int. J. Circuit Theory Appl., 2010, 39, (11), pp. 11611175 (doi: 10.1002/cta.693).
    16. 16)
      • 6. Rustom, K., Weihong, Q., Iannello, C., Batarseh, I.: ‘Five-terminal switched transformer average modeling and AC analysis of PFC converters’, IEEE Trans. Power Electron., 2007, 22, (6), pp. 23522362 (doi: 10.1109/TPEL.2007.909193).
    17. 17)
      • 9. Dalla Costa, M.A., Alonso, J.M., Miranda, J.C., Garcia, J., Lamar, D.G.: ‘A single-stage high-power-factor electronic ballast based on integrated buck flyback converter to supply metal halide lamps’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 11121122 (doi: 10.1109/TIE.2007.909729).
    18. 18)
      • 5. Narimani, M., Moschopoulos, G.: ‘A new single-phase single-stage three-level power factor correction AC–DC converter’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 28882899 (doi: 10.1109/TPEL.2011.2174256).
    19. 19)
      • 4. Lu, D.D.C., Shu-Kong, K.: ‘Light-load efficiency improvement in buck-derived single-stage single-switch PFC converters’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 21052110 (doi: 10.1109/TPEL.2012.2221744).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2013.0042
Loading

Related content

content/journals/10.1049/iet-pel.2013.0042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading