access icon free Doubly fed induction generator-based off-grid wind energy conversion systems feeding dynamic loads

This study deals with the operation and control of a doubly fed induction generator (DFIG)-based off-grid wind energy conversion system (WECS). Two back-to-back connected voltage source converters with intermediate DC-link supported with a battery energy storage system are used as a voltage and frequency controller (VFC). A field oriented control algorithm is used for VFC to perform as a load leveller, a load balancer, an active filter along with a VFC. Simulation results are verified on a developed prototype of VFC for DFIG-based off-grid WECS. The performance of WECS is demonstrated feeding non-linear and dynamic loads.

Inspec keywords: voltage control; active filters; wind power plants; load flow control; power convertors; frequency control; machine vector control; direct energy conversion; battery storage plants; asynchronous generators

Other keywords: doubly fed induction generator; back-to-back connected voltage source converters; voltage controller; intermediate DC link; battery energy storage system; nonlinear load; active filter; wind energy conversion system; dynamic load; VFC; off-grid WECS; load leveller; load balancer; field oriented control algorithm; DFIG; frequency controller

Subjects: Power convertors and power supplies to apparatus; Secondary cells; Control of electric power systems; Asynchronous machines; Wind power plants; Frequency control; Power system control; Voltage control

References

    1. 1)
      • 5. Valle, R.G.del, Cotorogea, M., Rabelo, B., Hofmann, W.: ‘On the emulation of an isolated wind energy conversion system: experimental results’. Proc. IEEE Electronics, Robotics and Automotive Mechanics Conf. CERMA ’09, 22–25 September 2009, pp. 462467.
    2. 2)
      • 7. Tremblay, E., Atayde, S., Chandra, A.: ‘Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: a DSP-based implementation approach’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 288299 (doi: 10.1109/TSTE.2011.2113381).
    3. 3)
      • 10. Phan, V.T., Lee, H.H.: ‘Improved predictive current control for unbalanced stand-alone doubly-fed induction generator-based wind power systems’, IET Electr. Power Appl., 2011, 5, (3), pp. 275287 (doi: 10.1049/iet-epa.2010.0107).
    4. 4)
      • 4. Fuchs, E.W., Masoum, M.A.H.: ‘Power conversion of renewable energy systems’ (Springer, New York, 2011).
    5. 5)
      • 2. Sharpe, B.D., Jenkins, N., Bossanyi, E.: ‘Wind energy handbook’ (John Wiley & Sons. Ltd., 2004).
    6. 6)
      • 6. Iwanski, G., Koczara, W.: ‘Sensorless direct voltage control of the stand-alone slip-ring induction generator’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 12371239 (doi: 10.1109/TIE.2007.892746).
    7. 7)
      • 1. Patel, M.R.: ‘Wind and solar power systems’ (CRC Press, Washington DC, 2006, 2nd edn.).
    8. 8)
      • 11. Phan, V.T., Lee, H.H.: ‘Performance enhancement of stand-alone DFIG systems with control of rotor and load side converters using resonant controllers’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 199210 (doi: 10.1109/TIA.2011.2175883).
    9. 9)
      • 13. Akagi, H., Watanabe, E.H., Aredes, M.: ‘Instantaneous power theory and applications to power conditioning’ (Wiley-Inter-science, IEEE Press, 2007).
    10. 10)
      • 12. Goel, P.K., Singh, B., Murthy, S.S., Kishore, N.: ‘Parallel operation of DFIGs in three-phase four-wire autonomous wind energy conversion system’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 18721883 (doi: 10.1109/TIA.2011.2153170).
    11. 11)
      • 3. Boldea, I.: ‘The electric generators handbook, variable speed generators’ (C.R.C., Taylor & Francis, 2006).
    12. 12)
      • 8. Iwanski, G., Koczara, W.: ‘DFIG-based power generation system with UPS function for variable-speed applications’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 30473054 (doi: 10.1109/TIE.2008.918473).
    13. 13)
      • 9. Bhuiyan, F.A., Yazdani, A.: ‘Multimode control of a DFIG-based wind-power unit for remote applications’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 20792089 (doi: 10.1109/TPWRD.2009.2021030).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2013.0010
Loading

Related content

content/journals/10.1049/iet-pel.2013.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading