access icon free A novel heuristic optimisation algorithm for automated design of resonant compensators for shunt active filters

This study presents the automated control design for shunt active filters using a novel heuristic optimisation algorithm. The hybrid bacterial foraging optimisation algorithm is specifically developed for the automated optimisation of the modified resonant compensator for the compensation of all main harmonics, 5th, 7th, 11th and 13th. The compensator is based on the sinusoidal internal model principle providing excellent improvement in control accuracy and performance for harmonic signals. The compensator is implemented in a single rotating reference frame fixed to the supply voltage vector. The automated design procedure and a novel optimisation algorithm are presented in detail. Experimental results demonstrate the effectiveness of the proposed control design and the accuracy of current tracking performance.

Inspec keywords: power harmonic filters; active filters

Other keywords: sinusoidal internal model principle; automated design procedure; resonant compensators; hybrid bacterial foraging optimisation algorithm; current tracking performance; control accuracy; automated control design; heuristic optimisation algorithm; single rotating reference frame; shunt active filters; harmonic signals

Subjects: Other power apparatus and electric machines; Power supply quality and harmonics

References

    1. 1)
      • 5. Malesani, L., Mattavelli, P., Tomasin, P.: ‘High-performance hysteresis modulation technique for active filters’, IEEE Trans. Power Electron., 1997, 12, (5), pp. 876884 (doi: 10.1109/63.623006).
    2. 2)
      • 9. Rahmani, S., Mendalek, N., Al-Haddad, K.: ‘Experimental design of a nonlinear control technique for three-phase shunt active power filter’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 33643375 (doi: 10.1109/TIE.2009.2038945).
    3. 3)
      • 17. Da Silva, W.G., Acarnley, P.P., Finch, J.W.: ‘Application of genetic algorithms to the online tuning of electric drive speed controllers’, IEEE Trans. Ind. Electron., 2000, 47, (1), pp. 217219 (doi: 10.1109/41.824145).
    4. 4)
      • 14. Lenwari, W., Sumner, M., Zanchetta, P.: ‘The use of genetic algorithms for the design of resonant compensators for active filters’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 28522861 (doi: 10.1109/TIE.2009.2018535).
    5. 5)
      • 24. Das, T.K., Venayagamoorthy, G.K., Aliyu, U.O.: ‘Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA’, IEEE Trans. Ind. Electron., 2008, 44, (5), pp. 14451457.
    6. 6)
      • 3. Akagi, H.: ‘New trends in active filters for power conditioning’, IEEE Trans. Ind. Appl., 1996, 32, pp. 13121322 (doi: 10.1109/28.556633).
    7. 7)
      • 21. Liu, C.-H., Hsu, Y.-Y.: ‘Design of a self-tuning PI controller for a STATCOM using particle swarm optimization’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 702715 (doi: 10.1109/TIE.2009.2028350).
    8. 8)
      • 15. Zmood, D.N., Holmes, D.G., Bode, G.: ‘Frequency domain analysis of three phase linear current regulators’, IEEE Trans. Ind. Appl., 2001, 37, (2), pp. 601610 (doi: 10.1109/28.913727).
    9. 9)
      • 18. Zanchetta, P., Clare, J., Wheeler, P., Katsis, D., Bland, M., Empringham, L.: ‘Control design of a three-phase matrix converter AC power supply using genetic algorithms’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 209217 (doi: 10.1109/TIE.2007.903974).
    10. 10)
      • 13. Liserre, M., Teodorescu, R., Blaabjerg, F.: ‘Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 836841 (doi: 10.1109/TPEL.2006.875566).
    11. 11)
      • 4. Singh, B., Al-Haddad, K., Chandra, A.: ‘A review of active filters for power quality improvement’, IEEE Trans. Ind. Electron., 1999, 46, (5), pp. 960971 (doi: 10.1109/41.793345).
    12. 12)
      • 11. Grino, R., Cardoner, R., Costa-Castello, R., Fossas, E.: ‘Digital repetitive control of a three–phase four-wire shunt active filter’, IEEE Trans. Ind. Electron., 2007, 54, (3), pp. 14951503 (doi: 10.1109/TIE.2007.894790).
    13. 13)
      • 7. Jain, S.K., Agrawal, P., Gupta, H.O.: ‘Fuzzy logic controlled shunt active power filter for power quality improvement’, IEE Proc. Electr. Power Appl., 2002, 149, (5), pp. 317328 (doi: 10.1049/ip-epa:20020511).
    14. 14)
      • 20. Tsai, C.-C., Huang, H.-C., Chan, C.-K.: ‘Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 48134821 (doi: 10.1109/TIE.2011.2109332).
    15. 15)
      • 16. Cupertino, F., Mininno, E., Naso, D., Turchiano, B., Salvatore, L.: ‘On-line genetic design of anti-windup unstructured controllers for electric drives with variable load’, IEEE Trans. Evol. Comput., 2004, 8, (4), pp. 347364 (doi: 10.1109/TEVC.2004.827823).
    16. 16)
      • 7. Jain, S.K., Agrawal, P., Gupta, H.O.: ‘Fuzzy logic controlled shunt active power filter for power quality improvement’, IEE Proc. Electr. Power Appl., 2002, 149, (5), pp. 317328 (doi: 10.1049/ip-epa:20020511).
    17. 17)
      • 3. Akagi, H.: ‘New trends in active filters for power conditioning’, IEEE Trans. Ind. Appl., 1996, 32, pp. 13121322 (doi: 10.1109/28.556633).
    18. 18)
      • 5. Malesani, L., Mattavelli, P., Tomasin, P.: ‘High-performance hysteresis modulation technique for active filters’, IEEE Trans. Power Electron., 1997, 12, (5), pp. 876884 (doi: 10.1109/63.623006).
    19. 19)
      • 11. Grino, R., Cardoner, R., Costa-Castello, R., Fossas, E.: ‘Digital repetitive control of a three–phase four-wire shunt active filter’, IEEE Trans. Ind. Electron., 2007, 54, (3), pp. 14951503 (doi: 10.1109/TIE.2007.894790).
    20. 20)
      • 13. Liserre, M., Teodorescu, R., Blaabjerg, F.: ‘Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 836841 (doi: 10.1109/TPEL.2006.875566).
    21. 21)
      • 26. Margalith, A., Mergler, H.W.: ‘Optimum setting for proportional controller’, IEEE Trans. Ind. Electron., 1982, IE-29, (2), pp. 165175 (doi: 10.1109/TIE.1982.356657).
    22. 22)
      • 24. Das, T.K., Venayagamoorthy, G.K., Aliyu, U.O.: ‘Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA’, IEEE Trans. Ind. Electron., 2008, 44, (5), pp. 14451457.
    23. 23)
      • 18. Zanchetta, P., Clare, J., Wheeler, P., Katsis, D., Bland, M., Empringham, L.: ‘Control design of a three-phase matrix converter AC power supply using genetic algorithms’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 209217 (doi: 10.1109/TIE.2007.903974).
    24. 24)
      • 2. Grady, M., Santoso, W.: ‘Understanding power system harmonics’, IEEE Power Eng. Rev., 2001, 21, (11), pp. 811 (doi: 10.1109/MPER.2001.961997).
    25. 25)
      • 12. Boonto, S., Lenwari, W.: ‘Two-degree-of-freedom H control design for harmonic current control of shunt active filters’. Proc. IEEE 15th Int. Conf. on Harmonics and Quality of Power (ICHQP), June 2012, pp. 887891.
    26. 26)
      • 23. Tang, W.J., Li, M.S., Wu, Q.H., Saunders, J.R.: ‘Bacterial foraging algorithm for optimal flow in dynamic environments’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2008, 55, (8), pp. 24332442 (doi: 10.1109/TCSI.2008.918131).
    27. 27)
      • 16. Cupertino, F., Mininno, E., Naso, D., Turchiano, B., Salvatore, L.: ‘On-line genetic design of anti-windup unstructured controllers for electric drives with variable load’, IEEE Trans. Evol. Comput., 2004, 8, (4), pp. 347364 (doi: 10.1109/TEVC.2004.827823).
    28. 28)
      • 17. Da Silva, W.G., Acarnley, P.P., Finch, J.W.: ‘Application of genetic algorithms to the online tuning of electric drive speed controllers’, IEEE Trans. Ind. Electron., 2000, 47, (1), pp. 217219 (doi: 10.1109/41.824145).
    29. 29)
      • 9. Rahmani, S., Mendalek, N., Al-Haddad, K.: ‘Experimental design of a nonlinear control technique for three-phase shunt active power filter’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 33643375 (doi: 10.1109/TIE.2009.2038945).
    30. 30)
      • 8. Mendalek, N., Al-Haddad, K., Fnaiech, F., Dessaint, L.A.: ‘Sliding mode control of 3-phase shunt active filter in the d-q frame’. Proc. Power Electronics Specialists Conf. (PESC 02), June 2002, vol. 1, pp. 369375.
    31. 31)
      • 19. Zanchetta, P., Sumner, M., Cupertino, F., Marinelli, M., Mininno, E.: ‘On-line and off-line control design in power electronics and drives using genetic algorithms’. IEEE Industry Applications Society Conf., October 2004, pp. 145151.
    32. 32)
      • 20. Tsai, C.-C., Huang, H.-C., Chan, C.-K.: ‘Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 48134821 (doi: 10.1109/TIE.2011.2109332).
    33. 33)
      • 26. Margalith, A., Mergler, H.W.: ‘Optimum setting for proportional controller’, IEEE Trans. Ind. Electron., 1982, IE-29, (2), pp. 165175 (doi: 10.1109/TIE.1982.356657).
    34. 34)
      • 4. Singh, B., Al-Haddad, K., Chandra, A.: ‘A review of active filters for power quality improvement’, IEEE Trans. Ind. Electron., 1999, 46, (5), pp. 960971 (doi: 10.1109/41.793345).
    35. 35)
      • 6. Sumner, M., Palethorpe, B., Thomas, D.W.P.: ‘Impedance measurement for improved power quality – part 2: a new technique for stand alone active shunt filter control’, IEEE Trans. Power Deliv., 2004, 19, (3), pp. 14571463 (doi: 10.1109/TPWRD.2004.829874).
    36. 36)
      • 1. Dugan, R.C., McGranaghan, M.F., Beaty, H.W.: ‘Electrical power system quality’ (McGraw-Hill, 1996).
    37. 37)
      • 14. Lenwari, W., Sumner, M., Zanchetta, P.: ‘The use of genetic algorithms for the design of resonant compensators for active filters’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 28522861 (doi: 10.1109/TIE.2009.2018535).
    38. 38)
      • 21. Liu, C.-H., Hsu, Y.-Y.: ‘Design of a self-tuning PI controller for a STATCOM using particle swarm optimization’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 702715 (doi: 10.1109/TIE.2009.2028350).
    39. 39)
      • 15. Zmood, D.N., Holmes, D.G., Bode, G.: ‘Frequency domain analysis of three phase linear current regulators’, IEEE Trans. Ind. Appl., 2001, 37, (2), pp. 601610 (doi: 10.1109/28.913727).
    40. 40)
      • 10. Odavic, M., Biagini, V., Zanchetta, P., Sumner, M., Degano, M.: ‘One-sample-period-ahead predictive current control for high-performance active shunt power filters’, IET Power Electron., 2011, 4, pp. 414423 (doi: 10.1049/iet-pel.2010.0137).
    41. 41)
      • 25. Okaeme, N., Zanchetta, P.: ‘Hybrid bacterial foraging optimisation strategy for automated experimental control design in electrical drives’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 668678 (doi: 10.1109/TII.2012.2225435).
    42. 42)
      • 22. Passino, K.M.: ‘Biomimicry of bacterial foraging for distributed optimization and control’, IEEE Control Syst. Mag., 2002, 22, (3), pp. 5267 (doi: 10.1109/MCS.2002.1004010).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0755
Loading

Related content

content/journals/10.1049/iet-pel.2012.0755
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading