access icon free Complex state variable- and disturbance observer-based current controllers for AC drives: an experimental comparison

In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path, extracted by a disturbance observer and then injected into the current controller. In this study, a revised version of a disturbance observer-based controller and a well known complex variable model-based design with a single set of complex pole are compared in terms of design aspects and performance evaluation by simulation and by experiment for two different sampling rates. Several comparative results that verify the promising performance of the proposed control scheme are presented. The advantages of the proposed controller are an easy implementation and offering a unique solution for the variation of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller.

Inspec keywords: machine theory; closed loop systems; electric current control; stators; AC motor drives

Other keywords: vector-controlled AC drives; d-axes components; q-axes components; machine parameters; complex variable model; stator current; disturbance observer; closed-loop path; complex state variable-current controllers; machine model; cross-coupling effect; synchronous frame coordinate

Subjects: a.c. machines; Control of electric power systems; Current control; Drives

References

    1. 1)
      • 8. Cortés, P., Kazmierkowski, M.P., Kennel, R.M., Quevedo, D.E., Rodríguez, J.: ‘Predictive control in power electronics and drives’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43124324 (doi: 10.1109/TIE.2008.2007480).
    2. 2)
      • 14. Comanescu, M., Xu, L., Batzel, T.D.: ‘Decoupled current control of senor-less induction-motor drives by integral sliding mode’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 38363845 (doi: 10.1109/TIE.2008.2003201).
    3. 3)
      • 9. Bae, B.-H., Sul, S.-K.: ‘A compensation method for time delay of full digital synchronous frame current regulator of PWM AC drives’, IEEE Trans. Ind. Appl., 2003, 39, (3), pp. 802810 (doi: 10.1109/TIA.2003.810660).
    4. 4)
      • 10. Bahrani, B., Kenzelmann, S., Rufer, A.: ‘Multivariable-PI-based DQ current control of voltage source converters with superior axes decoupling capability’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 30163026 (doi: 10.1109/TIE.2010.2070776).
    5. 5)
      • 4. Rowan, T.M., Kerkman, R.J.: ‘A new synchronous current regulator and an analysis of current regulated PWM inverters’, IEEE Trans. Ind. Appl., 1986, IA-22, (4), pp. 678690 (doi: 10.1109/TIA.1986.4504778).
    6. 6)
      • 13. Holmes, D.G., Peter, B., Parker, S.G.: ‘Current regulation strategies for vector-controlled induction motor drives’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 36803689 (doi: 10.1109/TIE.2011.2165455).
    7. 7)
      • 6. Holtz, J., Beyer, B.: ‘Fast current trajectory tracking control based on synchronous optimal pulsewidth modulation’, IEEE Trans. Ind. Appl., 1995, 31, (5), pp. 11101120 (doi: 10.1109/28.464526).
    8. 8)
      • 19. Briz, F.M., Degener, W., Lorenz, R.D.: ‘Analysis and design of current regulators using complex vectors’, IEEE Trans. Ind. Appl., 2000, 32, pp. 817825 (doi: 10.1109/28.845057).
    9. 9)
      • 11. Holmes, D.G., Lipo, T.A., McGrath, B.P., Kong, W.Y.: ‘Optimised design of stationary frame three phase AC current regulators’, IEEE Trans. Power Electron., 2009, 24, (11), pp. 24172426 (doi: 10.1109/TPEL.2009.2029548).
    10. 10)
      • 24. Katsura, S., Matsumoto, Y., Ohnishi, K.: ‘Analysis and experimental validation of force bandwidth for force control’, IEEE Trans. Ind. Electron., 2006, 53, (3), pp. 922928 (doi: 10.1109/TIE.2006.874262).
    11. 11)
      • 20. Holtz, J., Quan, J., Pontt, J., Rodríguez, J., , Newman, P., , Miranda, H.: ‘Design of fast and robust current regulators for high-power drives based on complex state variables’, IEEE Trans. Ind. Appl., 2004, 40, (5), pp. 13881396 (doi: 10.1109/TIA.2004.834049).
    12. 12)
      • 17. Harnefors, L., Nee, H.P.: ‘Model-based current control of AC machines using the internal model control method’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 133141 (doi: 10.1109/28.658735).
    13. 13)
      • 12. Yepes, A.G., Freijedo, F.D., Doval-Gandoy, J., Lopez, O., Malvar, J., Fernandez-Comesana, P.: ‘Effects of discretization methods on the performance of resonant controllers’, IEEE Trans. Power Electron., 2010, 25, (7), pp. 16921712 (doi: 10.1109/TPEL.2010.2041256).
    14. 14)
      • 1. Kazmierkowski, M.P., Malesani, L.: ‘Current control techniques for three-phase voltage-source PWM converters: a survey’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 691703 (doi: 10.1109/41.720325).
    15. 15)
      • 23. Buja, G.S., Menis, R., Valla, M.I.: ‘Disturbance torque estimation in a sensor-less DC drive’, IEEE Trans. Ind. Electron., 1995, 42, pp. 351357 (doi: 10.1109/41.402473).
    16. 16)
      • 2. Broeck, H.W.V.D., Skudelny, H.C., Stanke, G.V.: ‘Analysis and realization of a pulse width modulator based on voltage space vectors’, IEEE Trans. Ind. Appl., 1988, 24, (1), pp. 142150 (doi: 10.1109/28.87265).
    17. 17)
      • 7. Yang, S.-M., Lee, C.-H.: ‘A deadbeat current controller for field oriented induction motor drives’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 772778 (doi: 10.1109/TPEL.2002.802182).
    18. 18)
      • 15. Shyu, K.K., Shieh, H.J.: ‘Variable structure current control for induction motor drives by space voltage vector PWM’, IEEE Trans. Ind. Appl., 1995, 42, pp. 572577.
    19. 19)
      • 5. Lorenz, R.D., Lawson, D.B.: ‘Performance of feedforward current regulators for field-oriented induction machine controllers’, IEEE Trans. Ind. Appl., 1987, IA-23, (4), pp. 597602 (doi: 10.1109/TIA.1987.4504956).
    20. 20)
      • 30. Robyns, B.P., Sente, A., Buyse, H.A., Labrique, F.: ‘Influence of digital current control strategy on the sensitivity to electrical parameter uncertainties of induction motor indirect field-oriented control’, IEEE Trans. Power Electron., 1999, 14, (4), pp. 690699 (doi: 10.1109/63.774206).
    21. 21)
      • 22. Kim, H., Degner, M.W., Guerrero, J.M., Briz, F., Lorenz, R.D.: ‘Discrete-time current regulator design for AC machine drives’, IEEE Trans. Ind. Appl., 2010, 46, (4), pp. 14251435 (doi: 10.1109/TIA.2010.2049628).
    22. 22)
      • 21. Yim, J.S., Sul, S.K., Bae, B.H., Patel, N.R., Hiti, S.: ‘Modified current control schemes for high performance PMAC drives with low sampling to operating frequency ratio’, IEEE Trans. Ind. Appl., 2009, 45, (2), pp. 763771 (doi: 10.1109/TIA.2009.2013600).
    23. 23)
      • 18. Britz, F.M., Degener, W., Lorenz, D.: ‘Dynamic analysis of current regulators for AC motors using complex vectors’, IEEE Trans. Ind. Appl., 1999, 35, pp. 14241432 (doi: 10.1109/28.806058).
    24. 24)
      • 24. Katsura, S., Matsumoto, Y., Ohnishi, K.: ‘Analysis and experimental validation of force bandwidth for force control’, IEEE Trans. Ind. Electron., 2006, 53, (3), pp. 922928 (doi: 10.1109/TIE.2006.874262).
    25. 25)
      • 1. Kazmierkowski, M.P., Malesani, L.: ‘Current control techniques for three-phase voltage-source PWM converters: a survey’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 691703 (doi: 10.1109/41.720325).
    26. 26)
      • 5. Lorenz, R.D., Lawson, D.B.: ‘Performance of feedforward current regulators for field-oriented induction machine controllers’, IEEE Trans. Ind. Appl., 1987, IA-23, (4), pp. 597602 (doi: 10.1109/TIA.1987.4504956).
    27. 27)
      • 28. Fröhr, F., Orttenburger, F.: ‘Introduction to electronic control engineering’ (Berlin, Siemens Editions, 1982).
    28. 28)
      • 2. Broeck, H.W.V.D., Skudelny, H.C., Stanke, G.V.: ‘Analysis and realization of a pulse width modulator based on voltage space vectors’, IEEE Trans. Ind. Appl., 1988, 24, (1), pp. 142150 (doi: 10.1109/28.87265).
    29. 29)
      • 23. Buja, G.S., Menis, R., Valla, M.I.: ‘Disturbance torque estimation in a sensor-less DC drive’, IEEE Trans. Ind. Electron., 1995, 42, pp. 351357 (doi: 10.1109/41.402473).
    30. 30)
      • 22. Kim, H., Degner, M.W., Guerrero, J.M., Briz, F., Lorenz, R.D.: ‘Discrete-time current regulator design for AC machine drives’, IEEE Trans. Ind. Appl., 2010, 46, (4), pp. 14251435 (doi: 10.1109/TIA.2010.2049628).
    31. 31)
      • 14. Comanescu, M., Xu, L., Batzel, T.D.: ‘Decoupled current control of senor-less induction-motor drives by integral sliding mode’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 38363845 (doi: 10.1109/TIE.2008.2003201).
    32. 32)
      • 3. Malesani, L., Tomasin, P.: ‘PWM space vector current control techniques of voltage source converters: a survey’. 19th Annual Conf. IEEE Industrial Electronics Society, IECON'93, Maui-Hawaii, USA, November 1993, pp. 670675.
    33. 33)
      • 8. Cortés, P., Kazmierkowski, M.P., Kennel, R.M., Quevedo, D.E., Rodríguez, J.: ‘Predictive control in power electronics and drives’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43124324 (doi: 10.1109/TIE.2008.2007480).
    34. 34)
      • 11. Holmes, D.G., Lipo, T.A., McGrath, B.P., Kong, W.Y.: ‘Optimised design of stationary frame three phase AC current regulators’, IEEE Trans. Power Electron., 2009, 24, (11), pp. 24172426 (doi: 10.1109/TPEL.2009.2029548).
    35. 35)
      • 29. Khalil, H.K.: ‘Nonlinear system’ (New Jersey, Pearson Education Inc., 2000).
    36. 36)
      • 19. Briz, F.M., Degener, W., Lorenz, R.D.: ‘Analysis and design of current regulators using complex vectors’, IEEE Trans. Ind. Appl., 2000, 32, pp. 817825 (doi: 10.1109/28.845057).
    37. 37)
      • 13. Holmes, D.G., Peter, B., Parker, S.G.: ‘Current regulation strategies for vector-controlled induction motor drives’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 36803689 (doi: 10.1109/TIE.2011.2165455).
    38. 38)
      • 21. Yim, J.S., Sul, S.K., Bae, B.H., Patel, N.R., Hiti, S.: ‘Modified current control schemes for high performance PMAC drives with low sampling to operating frequency ratio’, IEEE Trans. Ind. Appl., 2009, 45, (2), pp. 763771 (doi: 10.1109/TIA.2009.2013600).
    39. 39)
      • 20. Holtz, J., Quan, J., Pontt, J., Rodríguez, J., , Newman, P., , Miranda, H.: ‘Design of fast and robust current regulators for high-power drives based on complex state variables’, IEEE Trans. Ind. Appl., 2004, 40, (5), pp. 13881396 (doi: 10.1109/TIA.2004.834049).
    40. 40)
      • 16. Dal, M.: ‘Incorporation of sliding mode control into current and direct torque controllers for induction motor drives’, IREE Int. Rev. Electr. Eng., 2012, 7, (2), pp. 38663876.
    41. 41)
      • 18. Britz, F.M., Degener, W., Lorenz, D.: ‘Dynamic analysis of current regulators for AC motors using complex vectors’, IEEE Trans. Ind. Appl., 1999, 35, pp. 14241432 (doi: 10.1109/28.806058).
    42. 42)
      • 6. Holtz, J., Beyer, B.: ‘Fast current trajectory tracking control based on synchronous optimal pulsewidth modulation’, IEEE Trans. Ind. Appl., 1995, 31, (5), pp. 11101120 (doi: 10.1109/28.464526).
    43. 43)
      • 10. Bahrani, B., Kenzelmann, S., Rufer, A.: ‘Multivariable-PI-based DQ current control of voltage source converters with superior axes decoupling capability’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 30163026 (doi: 10.1109/TIE.2010.2070776).
    44. 44)
      • 26. Dal, M., Teoderescu, R.: ‘Disturbance observer based current controller for vector controlled IM drives’. Proc. IEEE 39th Int. Power Electronics Specialists Conf., Island of Rhodes, Greece, June 2008, pp. 26212625.
    45. 45)
      • 27. Vas, P.: ‘Vector control of AC machines’ (Oxford, Clarendon Press, 1990).
    46. 46)
      • 25. Ohnishi, K, Matsui, N., Hori, Y.: ‘Estimation, identification, and sensorless control in motion control system’, in Bose, B.K., (ed.): Power electronics and variable frequency drives: technology and applications’ (Wiley-IEEE Press, 994), pp. 12531265.
    47. 47)
      • 4. Rowan, T.M., Kerkman, R.J.: ‘A new synchronous current regulator and an analysis of current regulated PWM inverters’, IEEE Trans. Ind. Appl., 1986, IA-22, (4), pp. 678690 (doi: 10.1109/TIA.1986.4504778).
    48. 48)
      • 12. Yepes, A.G., Freijedo, F.D., Doval-Gandoy, J., Lopez, O., Malvar, J., Fernandez-Comesana, P.: ‘Effects of discretization methods on the performance of resonant controllers’, IEEE Trans. Power Electron., 2010, 25, (7), pp. 16921712 (doi: 10.1109/TPEL.2010.2041256).
    49. 49)
      • 30. Robyns, B.P., Sente, A., Buyse, H.A., Labrique, F.: ‘Influence of digital current control strategy on the sensitivity to electrical parameter uncertainties of induction motor indirect field-oriented control’, IEEE Trans. Power Electron., 1999, 14, (4), pp. 690699 (doi: 10.1109/63.774206).
    50. 50)
      • 9. Bae, B.-H., Sul, S.-K.: ‘A compensation method for time delay of full digital synchronous frame current regulator of PWM AC drives’, IEEE Trans. Ind. Appl., 2003, 39, (3), pp. 802810 (doi: 10.1109/TIA.2003.810660).
    51. 51)
      • 17. Harnefors, L., Nee, H.P.: ‘Model-based current control of AC machines using the internal model control method’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 133141 (doi: 10.1109/28.658735).
    52. 52)
      • 7. Yang, S.-M., Lee, C.-H.: ‘A deadbeat current controller for field oriented induction motor drives’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 772778 (doi: 10.1109/TPEL.2002.802182).
    53. 53)
      • 15. Shyu, K.K., Shieh, H.J.: ‘Variable structure current control for induction motor drives by space voltage vector PWM’, IEEE Trans. Ind. Appl., 1995, 42, pp. 572577.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0748
Loading

Related content

content/journals/10.1049/iet-pel.2012.0748
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading