access icon free Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter

This study represents a method for estimating the state of charge (SOC) of lithium-ion batteries using radial basis function (RBF) networks and square-root unscented Kalman filter (KF). The RBF network is trained offline by sampled data from the battery in the charging process. This type of neural network finds the non-linear relation which is required in the state-space equations. The state variables include the battery terminal voltage and the SOC, at the previous sample and the present sample, respectively. The proposed method is tested experimentally on a lithium-ion battery with 1.2 Ah capacity to estimate the actual SOC of the battery. The experimental results of the proposed method show some advantages, which include: (i) it is not very sensitive to determine, precisely, the measurement and process noise covariance matrices such as Kalman filter and (ii). It contains lower noise on the output, in comparison with Adaptive extended Kalman filter (EKF).

Inspec keywords: radial basis function networks; lithium; adaptive signal processing; Kalman filters; secondary cells; nonlinear filters

Other keywords: state of charge estimation; radial basis function networks; nonlinear relation; Li; square-root unscented Kalman filter; lithium-ion battery

Subjects: Secondary cells; Secondary cells; Filtering methods in signal processing

References

    1. 1)
      • 22. He, Y., Liu, X.T., Zhang, C.B., Chen, Z.H.: ‘A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries’. Applied Energy, 2012, http://www.dx.doi.org/10.1016/j.apenergy.2012.08.031.
    2. 2)
      • 17. Bhangu, B.S., Bentley, P., Stone, D.A., Bingham, C.M.: ‘Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles’, IEEE Trans. Veh. Technol., 2005, 54.
    3. 3)
      • 26. Dash, P.K., Hasan, S., Panigrahi, B.K.: ‘Adaptive complex unscented Kalman filter for frequency estimation of time-varying signals’, IET Sci. Meas. Technol., 2010, 4, (2), pp. 93103 (doi: 10.1049/iet-smt.2009.0003).
    4. 4)
      • 18. Zhang, F., Liu, G., Fang, L., Wang, H.: ‘Estimation of battery state of charge with H∞ observer: applied to a robot for inspecting power transmission lines’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 10861095 (doi: 10.1109/TIE.2011.2159691).
    5. 5)
      • 4. Park, H.-S., Kim, C.-E., Kim, C.-H., Moon, G.-W., Lee, J.-H.: ‘A modularized charge equalizer for an HEV lithium-ion battery string’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 14641476 (doi: 10.1109/TIE.2009.2012456).
    6. 6)
      • 27. Julier, S.J., Uhlmann, J.K.: ‘A new extention of the Kalman filter to nonlinear systems’. Proc. AeroSense 11th Int. Symp. Aerospace/Defence Sensing, Simulation and Controls, 1997.
    7. 7)
      • 14. Cai, C., Du, D., Liu, Z., Ge, J.: ‘State-of-Charge (SOC) estimation of high power NI-MH rechargeable battery with artificial neural network’. Proc. IEEE Neural Information Processing, Singapore, 2002, pp. 824828.
    8. 8)
      • 3. Lukic, S.M., Cao, J., Bansal, R.C., Rodriguez, F., Emadi, A.: ‘Energy storage systems for automotive applications’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22582267 (doi: 10.1109/TIE.2008.918390).
    9. 9)
      • 21. Plett, G.L.: ‘Kalman-filter SOC estimation for LiPB HEV cells’. Proc. 19th Int. Battery, Hybrid and Fuel Cell for Electric Vehicles Symp. and Exhibition (EVS19), Bousan, 2002, pp. 112.
    10. 10)
      • 9. Rodrigues, S., Munichandraiah, N., Shukla, A.K.: ‘A review of state-of-charge indication of batteries by means of ac impedance measurements’, J. Power Sources, 2000, 87, pp. 1220 (doi: 10.1016/S0378-7753(99)00351-1).
    11. 11)
      • 20. Plett, G.L.: ‘Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Part 3. State and Parameter estimation’, J. Power Sources, 2004, 134, pp. 277292 (doi: 10.1016/j.jpowsour.2004.02.033).
    12. 12)
      • 7. Coleman, M., Lee, C.K., Zhu, C., Hurley, W.G.: ‘State-of-charge determination from EMF voltage estimation: using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 25502557 (doi: 10.1109/TIE.2007.899926).
    13. 13)
      • 1. Crompton, T.R.: ‘Battery reference book’ (Newnes Publishing Co., Oxford, 2000).
    14. 14)
      • 2. Piller, S., Perrin, M., Jossen, A.: ‘Methods for state-of-charge determination and their applications’, J. Power Sources, 2001, 96, pp. 113120 (doi: 10.1016/S0378-7753(01)00560-2).
    15. 15)
      • 23. Charkhgard, M., Farrokhi, M.: ‘State of charge estimation for lithium-ion batteries using neural networks and extended kalman filter’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41784187 (doi: 10.1109/TIE.2010.2043035).
    16. 16)
      • 8. Huet, F.: ‘A review of impedance measurements for determination of state-of-charge or state-of-health of secondary batteries’, J. Power Sources, 1998, 70, pp. 5969 (doi: 10.1016/S0378-7753(97)02665-7).
    17. 17)
      • 16. Pang, S., Farrell, J., Du, J., Barth, M.: ‘Battery state-of-charge estimation’. Proc. IEEE American Control Conf., Arlington, 2001, pp. 16441649.
    18. 18)
      • 25. Van der Merwe, R., Wan, E.A.: ‘The square-root unscented kalman filter for state and parameter estimation’. Oregon Graduate Institute of Science and Technology, Oregon 97006, USA.
    19. 19)
      • 10. Singh, P., Fennie, C., Reisner, D.E.: ‘Fuzzy logic modeling of state-of-charge and available capacity of nickel/metal hydride batteries’, J. Power Sources, 2004, 136, pp. 322333 (doi: 10.1016/j.jpowsour.2004.03.035).
    20. 20)
      • 12. Peng, J., Chen, Y., Eberhart, R.: ‘Battery pack state of charge estimator design using computational intelligence approaches’. Proc. IEEE Annual Battery Applications Conf., 2000, pp. 173177.
    21. 21)
      • 11. Yamazaki, T., Sakurai, K., Muramoto, K.I.: ‘Estimation of the recharge capacity of sealed lead-acid batteries by neural network’. Proc. IEEE Conf. Telecommunications Energy, San Francisco, 1998, pp. 210214.
    22. 22)
      • 5. Van der Merwe, R., Wan, E.A.: ‘The square-root unscented Kalman filter for state and Parameter Estimation’, 2001 IEE Int. Conf. on Acoustics, Speech and Signal processing, 2001. Proceedings (ICASSP ‘01), (Vol. 6)..
    23. 23)
      • 15. Cai, C.H., Du, D., Liu, Z.Y.: ‘Battery State-of-Charge (SOC) estimation using Adaptive Neuro-Fuzzy Inference System (ANFIS)’. Proc. IEEE Int. Conf. Fuzzy Systems’. St. Louis, USA, 2003, pp. 10681073.
    24. 24)
      • 22. He, Y., Liu, X.T., Zhang, C.B., Chen, Z.H.: ‘A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries’. Applied Energy, 2012, http://www.dx.doi.org/10.1016/j.apenergy.2012.08.031.
    25. 25)
      • 6. Blood, P.J., Sotiropoulos, S.: ‘An electrochemical technique for state of charge (SOC) probing of positive lead–acid battery plates’, J. Power Sources, 2002, 110, pp. 96106 (doi: 10.1016/S0378-7753(02)00231-8).
    26. 26)
      • 13. Cal, C.H., Du, D., Liu, Z.Y., Zhang, H.: ‘Artificial neural network in estimation of battery state-of-charge (SOC) with nonconventional input variables selected by correlation analysis’. Proc. IEEE Machine Learning and Cybernetics, Beijing, 2002, pp. 16191625.
    27. 27)
      • 24. Haykin, S.: ‘Neural networks: a comprehensive foundation’ (Prentice-Hall, New Jersey, 1994).
    28. 28)
      • 19. Plett, G.L.: ‘Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Part 2. Modeling and identification’, J. Power Sources, 2004, 134, pp. 262276 (doi: 10.1016/j.jpowsour.2004.02.032).
    29. 29)
      • 28. Hua, C.C., Lin, M.Y.: ‘A study of charging control of lead-acid battery for electric vehicles’. Proc. IEEE Int. Symp. on Industrial Electronics 1, 2000, pp. 135140.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0706
Loading

Related content

content/journals/10.1049/iet-pel.2012.0706
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading