access icon free Analysis and design of split-capacitor resistive-inductive passive damping for LCL filters in grid-connected inverters

Grid-connected inverters require a third-order LCL filter to meet standards such as the IEEE Std. 519-1992 while being compact and cost-effective. LCL filter introduces resonance, which needs to be damped through active or passive methods. Passive damping schemes have less control complexity and are more reliable. This study explores the split-capacitor resistive-inductive (SC-RL) passive damping scheme. The SC-RL damped LCL filter is modelled using state space approach. Using this model, the power loss and damping are analysed. Based on the analysis, the SC-RL scheme is shown to have lower losses than other simpler passive damping methods. This makes the SC-RL scheme suitable for high power applications. A method for component selection that minimises the power loss in the damping resistors while keeping the system well damped is proposed. The design selection takes into account the influence of switching frequency, resonance frequency and the choice of inductance and capacitance values of the filter on the damping component selection. The use of normalised parameters makes it suitable for a wide range of design applications. Analytical results show the losses and quality factor to be in the range of 0.05–0.1% and 2.0–2.5, respectively, which are validated experimentally.

Inspec keywords: state-space methods; IEEE standards; invertors; Q-factor

Other keywords: power loss; SC-RL damped LCL filter; damping component selection; passive method; switching frequency; active method; quality factor; third-order LCL filter; resonance frequency; IEEE Std. 519-1992; inductance values; grid-connected inverters; split-capacitor resistive-inductive passive damping; capacitance values; control complexity; state space approach; damping resistors

Subjects: Power convertors and power supplies to apparatus

References

    1. 1)
      • 29. Dannehl, J., Liserre, M., Fuchs, F.W.: ‘Filter-based active damping of voltage source converters with lcl filter’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36233633 (doi: 10.1109/TIE.2010.2081952).
    2. 2)
      • 31. Bierhoff, M., Fuchs, F.: ‘Active damping for three-phase pwm rectifiers with high-order line-side filters’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 371379 (doi: 10.1109/TIE.2008.2007950).
    3. 3)
      • 8. Mariethoz, S., Morari, M.: ‘Explicit model-predictive control of a pwm inverter with an LCL filter’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 389399 (doi: 10.1109/TIE.2008.2008793).
    4. 4)
      • 24. Zhao, W., Chen, G.: ‘Comparison of active and passive damping methods for application in high power active power filter with lcl-filter’. Proc. SUPERGEN ’09, 2009, pp. 16.
    5. 5)
      • 4. Gabe, I., Montagner, V., Pinheiro, H.: ‘Design and implementation of a robust current controller for VSI connected to the grid through an lcl filter’, IEEE Trans. Power Electron., 2009, 24, (6), pp. 14441452 (doi: 10.1109/TPEL.2009.2016097).
    6. 6)
      • 10. Massing, J., Stefanello, M., Grundling, H., Pinheiro, H.: ‘Adaptive current control for grid-connected converters with LCL-filter’, IEEE Trans. Ind. Electron., 2012, 59, (12), pp. 4681–4693 (doi: 10.1109/TIE.2011.2177610).
    7. 7)
      • 23. Dannehl, J., Fuchs, F., Hansen, S., Th andgersen, P.: ‘Investigation of active damping approaches for pi-based current control of grid-connected pulse width modulation converters with lcl filters’, IEEE Trans. Ind. Appl., 2010, 46, (4), pp. 15091517 (doi: 10.1109/TIA.2010.2049974).
    8. 8)
      • 3. Figueres, E., Garcera, G., Sandia, J., Gonzalez-Espin, F., Rubio, J.: ‘Sensitivity study of the dynamics of three-phase photovoltaic inverters with an lcl grid filter’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 706717 (doi: 10.1109/TIE.2008.2010175).
    9. 9)
      • 13. Rockhill, A., Liserre, M., Teodorescu, R., Rodriguez, P.: ‘Grid-filter design for a multimegawatt medium-voltage voltage-source inverter’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12051217 (doi: 10.1109/TIE.2010.2087293).
    10. 10)
      • 27. Gullvik, W., Norum, L., Nilsen, R.: ‘Active damping of resonance oscillations in LCL-filters based on virtual flux and virtual resistor’. Proc. European Conf. Power Electronics and Applications, 2007, pp. 110.
    11. 11)
      • 33. Bhattacharya, S., Frank, T.M., Divan, D., Banerjee, B.: ‘Active filter system implementation’, IEEE Ind. Appl. Mag., 1998, 4, (5), pp. 4763 (doi: 10.1109/2943.715508).
    12. 12)
      • 6. Mohamed, Y.A.R.I.: ‘Mitigation of dynamic, unbalanced, and harmonic voltage disturbances using grid-connected inverters with lcl filter’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 39143924 (doi: 10.1109/TIE.2010.2098372).
    13. 13)
      • 25. Yang, S., Zhang, X., Zhang, C., Xie, Z.: ‘Study on active damping methods for voltage source converter with lcl input filter’. Proc. IPEMC ’09, 2009, pp. 975979.
    14. 14)
      • 2. Jeong, H.G., Lee, K.B., Choi, S., Choi, W.: ‘Performance improvement of lcl-filter-based grid-connected inverters using PQR power transformation’, IEEE Trans. Power Electron., 2010, 25, (5), pp. 13201330 (doi: 10.1109/TPEL.2009.2037225).
    15. 15)
      • 5. Shen, G., Zhu, X., Zhang, J., Xu, D.: ‘A new feedback method for PR current control of lcl-filter-based grid-connected inverter’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 20332041 (doi: 10.1109/TIE.2010.2040552).
    16. 16)
      • 11. He, J., Li, Y.W.: ‘Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters’, IEEE Trans. Ind. Electron., 2012, 27, (4), pp. 18501861.
    17. 17)
      • 22. Zeng, G., Rasmussen, T., Ma, L., Teodorescu, R.: ‘Design and control of lcl-filter with active damping for active power filter’. Proc. IEEE Int. Symp. Ind. Electron. (ISIE, 2010), 2010, pp. 25572562.
    18. 18)
      • 9. Liu, F., Zhou, Y., Duan, S., Yin, J., Liu, B., Liu, F.: ‘Parameter design of a two-current-loop controller used in a grid-connected inverter system with lcl filter’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 44834491 (doi: 10.1109/TIE.2009.2021175).
    19. 19)
      • 32. Tang, Y., Loh, P.C., Wang, P., Choo, F.H., Gao, F.: ‘Exploring inherent damping characteristic of lcl-filters for three-phase grid-connected voltage source inverters’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 14331443 (doi: 10.1109/TPEL.2011.2162342).
    20. 20)
      • 26. Malinowski, M., Bernet, S.: ‘A simple voltage sensorless active damping scheme for three-phase pwm converters with an lcl filter’, IEEE Trans. Ind. Electron., 2008, 55, (4), pp. 18761880 (doi: 10.1109/TIE.2008.917066).
    21. 21)
      • 28. Wojciechowski, D., Strzelecki, R.: ‘Predictive control of active filter system with LCL coupling circuit’. Proc. Int. Power Electron. Conf. (IPEC), 2010, pp. 22762282.
    22. 22)
      • 30. Jalili, K., Bernet, S.: ‘Design of lcl filters of active-front-end two-level voltage-source converters’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 16741689 (doi: 10.1109/TIE.2008.2011251).
    23. 23)
      • 18. Routimo, M., Tuusa, H.: ‘Lcl type supply filter for active power filter – comparison of an active and a passive method for resonance damping’. Proc. IEEE PESC, 2007, pp. 29392945.
    24. 24)
      • 20. Ahmed, K., Finney, S., Williams, B.: ‘Passive filter design for three-phase inverter interfacing in distributed generation’. Proc. Compatibility in Power Electronics (CPE ’07), 2007 pp. 19.
    25. 25)
      • 19. Wang, T., Ye, Z., Sinha, G., Yuan, X.: ‘Output filter design for a grid-interconnected three-phase inverter’. Proc. IEEE PESC, 2003, vol. 2, pp. 779784.
    26. 26)
      • 17. Petterson, S., Salo, M., Tuusa, H.: ‘Applying an lcl-filter to a four-wire active power filter’. Proc. 37th Annu. Power Electron. Spec. Conf. (PESC ’06), 2006, pp. 17.
    27. 27)
      • 35. Holmes, D.G., Lipo, T.A.: ‘Pulse width modulation for power converters – principles and practice’ (IEEE Press, 2003).
    28. 28)
      • 7. Shen, G., Xu, D., Cao, L., Zhu, X.: ‘An improved control strategy for grid-connected voltage source inverters with an lcl filter’, IEEE Trans. Power Electron., 2008, 23, (4), pp. 18991906 (doi: 10.1109/TPEL.2008.924602).
    29. 29)
      • 34. Chen, C.T.: ‘Linear system theory and design’ (Oxford University Press, 1999, 3rd edn.).
    30. 30)
      • 15. Liserre, M., Blaabjerg, F., Hansen, S.: ‘Design and control of an LCL-filter-based three-phase active rectifier’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12811291 (doi: 10.1109/TIA.2005.853373).
    31. 31)
      • 16. Cha, H., Vu, T.K.: ‘Comparative analysis of low-pass output filter for single-phase grid-connected photovoltaic inverter’. Twenty-Fifth Annual IEEE Applied Power Electron. Conf. and Exposition (APEC), 2010, 2010, pp. 16591665.
    32. 32)
      • 14. Luiz, A.S., Cardoso Filho, B.: ‘Analysis of passive filters for high power three-level rectifiers’. Proc. IEEE 34th Annual Conf. Ind. Elec. IECON, 2008, pp. 32073212.
    33. 33)
      • 21. Channegowda, P., John, V.: ‘Filter optimization for grid interactive voltage source inverters’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41064114 (doi: 10.1109/TIE.2010.2042421).
    34. 34)
      • 1. ‘IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems’. IEEE Std 519-1992, 1992.
    35. 35)
      • 12. Mohamed, Y.R., A-Rahman, M., Seethapathy, R.: ‘Robust line-voltage sensorless control and synchronization of LCLl –filtered distributed generation inverters for high power quality grid connection’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 8798 (doi: 10.1109/TPEL.2011.2159866).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0679
Loading

Related content

content/journals/10.1049/iet-pel.2012.0679
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading