access icon free Two-stage micro-grid inverter with high-voltage gain for photovoltaic applications

This study proposes a new two-stage high voltage gain boost grid-connected inverter for AC-module photovoltaic (PV) system. The proposed system consists of a high-voltage gain switched inductor boost inverter cascaded with a current shaping (CS) circuit followed by an H-bridge inverter as a folded circuit and its switches operate at line frequency. The switched inductor boost converter (SIBC) has one switch operates like a continuous conduction mode. The maximum power of the PV module is achieved through the SIBC circuit whereas the grid connection requirements are accomplished using the CS circuit with the H-bridge inverter. The switch of the CS circuit is controlled with a sine wave modulation control scheme. The main advantages of the new proposed system are high boosting gain, lower switching losses and reduces the ground leakage current as all H-bridge switches operate at the line frequency. A 120 W prototype has been built and experimentally tested. It has been found that experimental results have a good matching with the proposed analysis and simulation results.

Inspec keywords: switches; photovoltaic power systems; maximum power point trackers; inductors; machine control; power system interconnection; invertors; power grids; power generation control; distributed power generation; switching convertors

Other keywords: H-bridge inverter; current shaping circuit; PV module; maximum power point tracking; SIBC; line frequency; power 120 W; microgrid inverter; high-voltage gain switched inductor boost inverter; boost grid-connected inverter; sine wave modulation control scheme; continuous conduction mode; AC module PV system; grid connection requirement; folded circuit; photovoltaic system; H-bridge switch; CS circuit switch control

Subjects: Relays and switches; Power convertors and power supplies to apparatus; Power system management, operation and economics; Control of electric power systems; Power system control; Distributed power generation; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 1. Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.: ‘A review of single-phase grid-connected inverters for photovoltaic modules’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12921306 (doi: 10.1109/TIA.2005.853371).
    2. 2)
      • 15. Yris, J.C., Calleja, H., Hernández, L., Olmos, J.: ‘Design and analysis of a grid connected inverter without isolation for an AC module’. IEEE Annual Applied Power Electronics Conf. and Exposition, 2012, pp. 20952099.
    3. 3)
      • 20. Axelrod, B., Berkovich, Y., Ioinovici, A.: ‘Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters’, IEEE Trans. Circuits Syst. I, Regu. Pap., 2008, 55, pp. 687696 (doi: 10.1109/TCSI.2008.916403).
    4. 4)
      • 7. Meneses, D., Blaabjerg, F., García, O., Cobos, J.A.: ‘Review and comparison of step-up transformerless topologies for photovoltaic AC-module application’, IEEE Trans. Power Electron., 2013, 28, pp. 26492663 (doi: 10.1109/TPEL.2012.2227820).
    5. 5)
      • 8. Vighetti, S., Ferrieux, J.-P., Lembeye, Y.: ‘Optimization and design of a cascaded DC/DC converter devoted to grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2012, 27, pp. 20182027 (doi: 10.1109/TPEL.2011.2167159).
    6. 6)
      • 26. http//www.solarcellsales.com/techinfo/docs/bp-485.pdf.
    7. 7)
      • 2. Lee, K.Y., Lai, Y.S.: ‘Novel circuit design for two-stage AC/DC converter to meet standby power regulations’, IET Power Electron., 2009, 2, pp. 625634 (doi: 10.1049/iet-pel.2008.0190).
    8. 8)
      • 13. Zhao, Z., Xu, M., Chen, Q., Lai, J., Cho, Y.: ‘Derivation, analysis, and implementation of a boost–buck converter-based high-efficiency PV inverter’, IEEE Trans. Power Electron., 2012, 27, pp. 13041313 (doi: 10.1109/TPEL.2011.2163805).
    9. 9)
      • 9. Abdel-Rahim, O., Orabi, M., Ahmed, M.: ‘High gain single-stage inverter for photovoltaic AC modules’. IEEE Annual Applied Power Electronics Conf. and Exposition, 2011, pp. 19611967.
    10. 10)
      • 23. Erickson, R.W., Maksimovic, D.: ‘Fundamental of power electronics’ (Kluwer Academic Publishers, New York, 2004), pp. 187204.
    11. 11)
      • 3. Abdel-Rahim, O., Orabi, M., Ahmed, M.: ‘Development of high-gain high-efficiency grid-connected inverter for PV module’. IEEE Symp. on Int. Power Electronics for Distributed Generation Systems, 2010, pp. 368373.
    12. 12)
      • 27. Piegari, L., Rizzo, R.: ‘Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking’, IET Renew. Power Gener., 2001, 4, (4), pp. 317328 (doi: 10.1049/iet-rpg.2009.0006).
    13. 13)
      • 25. Huber, L., Zhang, J., Jovanović, M.M., Lee, F.C.: ‘Generalized topologies of single-stage input-current-shaping circuits’, IEEE Trans. Power Electron., 2001, 16, (4), pp. 508513 (doi: 10.1109/63.931064).
    14. 14)
      • 6. Li, Q., Wolfs, P.: ‘A review of single phase photovoltaic module integrated converter topologies with three different DC link configurations’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 13201332 (doi: 10.1109/TPEL.2008.920883).
    15. 15)
      • 21. Sayed, K., Abdel-Salam, M., Ahmed, A., Ahmed, M.: ‘New high voltage gain dual-boost DC–DC converter for photovoltaic power systems’, Electr. Power Compon. Syst., 2012, 40, pp. 711728 (doi: 10.1080/15325008.2012.658596).
    16. 16)
      • 18. Kasa, N., Iida, T.: ‘Flyback type inverter for small scale photovoltaic power system’. IEEE Annual Conf. Industrial Electronics Society, (IECON, 2002), 2002, pp. 10891094.
    17. 17)
      • 5. Xiong, X., Ouyang, J.: ‘Modeling and transient behavior analysis of an inverter-based microgrid’, Electr. Power Compon. Syst., 2012, 40, pp. 112130 (doi: 10.1080/15325008.2011.621926).
    18. 18)
      • 10. Barreto, L.H.S.C., Praça, P.P., Oliveira, D.S., Bascope, R.P.T.: ‘Single-stages topologies integrating battery charging, high voltage step-up and photovoltaic energy extraction capabilities’, IET Electron. Lett., 2011, 47, (1), pp. 4950 (doi: 10.1049/el.2010.2944).
    19. 19)
      • 12. Karatepe, E., Syafaruddin Hiyama, T.: ‘Simple and high-efficiency photovoltaic system under non-uniform operating conditions’, IET Renew. Power Gener., 2010, 4, (4), pp. 354368 (doi: 10.1049/iet-rpg.2009.0150).
    20. 20)
      • 14. Junior, L.G., de Brito, M.A.G., Sampaio, L.P., Canesin, C.A.: ‘Single stage converters for low power stand-alone and grid-connected PV systems’. IEEE Int. Symp. Industrial Electronics (ISIE), 2011, pp. 11121117.
    21. 21)
      • 4. Shen, J.-M., Jou, H.-L., Wu, J.-C.: ‘Novel transformerless grid-connected power converter with negative grounding for photovoltaic generation system’, IEEE Trans. Power Electron., 2012, 27, pp. 18181829 (doi: 10.1109/TPEL.2011.2170435).
    22. 22)
      • 24. Alagele, M.M., Abdalla, M.M., Zerek, A.: ‘Design and simulation of single stage single switch input current shaping circuit for AC/DC converter based on PWM technique’. Proc. Seventh IEEE Int. Multi-Conf. Systems, Signals and Devices, 2010.
    23. 23)
      • 19. Jain, S., Agarwal, V.: ‘Single-stage grid connected inverter topology for solar pv systems with maximum power point tracking’, IEEE Trans. Power Electron., 2007, 22, pp. 19281940 (doi: 10.1109/TPEL.2007.904202).
    24. 24)
      • 16. Patel, H., Agarwal, V.: ‘A single-stage single-phase transformer-less doubly grounded grid-connected PV interface’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 93101 (doi: 10.1109/TEC.2008.2006551).
    25. 25)
      • 17. Zhang, Y., Woldegiorgis, A.T., Chang, L.: ‘Design and test of a novel buck-boost inverter with three switching devices’. IEEE Annual Applied Power Electronics Conf. and Exposition, APEC'2012, 2012, pp. 19731978.
    26. 26)
      • 11. Wang, Y.-J., Hsu, P.-C.: ‘Analytical modeling of partial shading and different orientation of photovoltaic modules’, IET Renew. Power Gener., 2010, 4, (3), pp. 272282 (doi: 10.1049/iet-rpg.2009.0157).
    27. 27)
      • 22. Rosas-Caro, J.C., Ramirez, J.M., Peng, F.Z., Valderrabano, A.: ‘A DC–DC multilevel boost converter’, IET Proc. Power Electron., 2010, 3, pp. 129137 (doi: 10.1049/iet-pel.2008.0253).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0666
Loading

Related content

content/journals/10.1049/iet-pel.2012.0666
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading