access icon free Analysis and implementation of a three-phase power factor correction scheme using modular Cuk rectifier for balanced and unbalanced supply conditions

In this study, the analysis and design of a three-phase AC–DC converter followed by DC–DC Cuk converter modules to achieve unity power factor is presented. Two methods of reference current generation techniques are employed. In the first scheme, reference current is generated using instantaneous symmetrical component theory under balanced supply conditions. In the second scheme, extended synchronous detection methods such as equal current criterion, equal power criterion and equal impedance criterion are used for reference current generation under unbalanced supply conditions. The control strategy uses three hysteresis current controllers for source current shaping and an outer voltage loop with proportional-integral controller for load voltage regulation. To validate the proposed method, a prototype controlled by dSPACE signal processor is set up. Simulation and experimental results indicate that the proposed system offers regulated output voltage for wide load variations and provides power factor close to unity.

Inspec keywords: voltage control; AC-DC power convertors; load regulation; power factor correction; PI control; electric current control; DC-DC power convertors

Other keywords: reference current generation techniques; outer voltage loop; unbalanced supply conditions; impedance criterion; balanced supply conditions; reference current generation; dSPACE signal processor; equal power criterion; modular Cuk rectifier; DC–DC Cuk converter modules; load voltage regulation; proportional-integral controller; control strategy; three-phase AC–DC converter; extended synchronous detection methods; equal current criterion; regulated output voltage; source current shaping; symmetrical component theory; three hysteresis current controllers; wide load variations; unity power factor; three-phase power factor correction

Subjects: Voltage control; Control of electric power systems; Current control; Power system control; Power convertors and power supplies to apparatus

References

    1. 1)
      • 6. Qiao, C., Smedley, K.M.: ‘Unified constant-frequency integration control of three-phase standard bridge boost rectifiers with power-factor correction’, IEEE Trans. Ind. Electron., 2003, 50, (1), pp. 100107 (doi: 10.1109/TIE.2002.804980).
    2. 2)
      • 9. Ghosh, R., Narayanan, G.: ‘Control of three-phase, four-wire PWM rectifier’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 8994 (doi: 10.1109/TPEL.2007.911783).
    3. 3)
      • 24. Chen, C.C., Hsu, Y.Y.: ‘A novel approach to the design of a shunt active filter for unbalanced three phase four wire systems under non sinusoidal conditions’, IEEE Trans. Power Deliv., 2000, 15, (4), pp. 12581264 (doi: 10.1109/61.891512).
    4. 4)
      • 7. Chattopadhyay, S., Ramanarayanan, V.: ‘Digital implementation of a line current shaping algorithm for three phase high power factor boost rectifier with out input voltage sensing’, IEEE Trans. Power Electron., 2004, 19, (3), pp. 709721 (doi: 10.1109/TPEL.2004.826494).
    5. 5)
      • 16. Umamaheswari, M.G., Uma, G., Vijayalakshmi, K.M.: ‘Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters’, IET Power Electron., 2011, 4, (9), pp. 984992 (doi: 10.1049/iet-pel.2010.0286).
    6. 6)
      • 5. Dalessandro, L., Round, S.D., Kolar, J.W.: ‘Center-point voltage balancing of hysteresis current controlled three-level PWM rectifiers’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 24772488 (doi: 10.1109/TPEL.2008.2002060).
    7. 7)
      • 13. Baumann, M., Kolar, J.W.: ‘Parallel connection of two three-phase three-switch buck-type unity-power factor rectifier systems with DC-link current balancing’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 30423053 (doi: 10.1109/TIE.2007.907006).
    8. 8)
      • 10. Wu, X.H., Panda, S.K., Xu, J.X.: ‘DC link voltage and supply-side current harmonics minimization of three phase PWM boost rectifiers using frequency domain based repetitive current controllers’, IEEE Trans. Power Electron., 2008, 23, (4), pp. 19871997 (doi: 10.1109/TPEL.2008.925428).
    9. 9)
      • 28. Montero, M.I.M., Cadaval, E.R., Gonzalez, F.B.: ‘Comparison of control strategies for shunt active power filters in three-phase four-wire systems’, IEEE Trans. Power Electron., 2007, 22, (1), pp. 229236 (doi: 10.1109/TPEL.2006.886616).
    10. 10)
      • 15. Al-Saffar, M.A., Ismail, E.H., Sabzali, A.J.: ‘Integrated buck boost–quadratic buck PFC rectifier for universal input applications’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 28862896 (doi: 10.1109/TPEL.2009.2023323).
    11. 11)
      • 8. Chattopadhyay, S., Ramanarayanan, V.: ‘A voltage-sensorless control method to balance the input currents of a three-wire boost rectifier under unbalanced input voltages condition’, IEEE Trans. Ind. Electron., 2005, 52, (2), pp. 709721 (doi: 10.1109/TIE.2005.843917).
    12. 12)
      • 11. Xiao, P., Corzine, K.A., Venayagamoorthy, G.K.: ‘Multiple reference frame-based control of three-phase PWM boost rectifiers under unbalanced and distorted input conditions’, IEEE Trans. Power Electron., 2008, 23, (4), pp. 20062017 (doi: 10.1109/TPEL.2008.925205).
    13. 13)
      • 2. Alves, R.L., Barbi, I.: ‘Analysis and implementation of a hybrid high-power-factor three-phase unidirectional rectifier’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 632640 (doi: 10.1109/TPEL.2008.2010219).
    14. 14)
      • 18. Eric Ho, Y.K., Hui, S.Y.R., Lee, Y.-S.: ‘Characterization of single-stage three-phase power-factor-correction circuit using modular single-phase PWM DC-to-DC converters’, IEEE Trans. Power Electron., 2000, 15, (1), pp. 6271 (doi: 10.1109/63.817364).
    15. 15)
      • 1. Chiu, H.-J., Wang, T.-H., Lin, L.-W., Lo, Y.-K.: ‘Current imbalance elimination for a three-phase three-switch PFC converter’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 10201022 (doi: 10.1109/TPEL.2007.917958).
    16. 16)
      • 20. Akagi, H., Nabae, A.: ‘The p-q theory in three-phase systems under non-sinusoidal conditions’, Eur. Trans. Electr. Power, 1993, 3, (1), pp. 2731 (doi: 10.1002/etep.4450030106).
    17. 17)
      • 19. Kim, S., Enjeti, P.N.: ‘A modular single-phase power-factor-correction scheme with a harmonic filtering function’, IEEE Trans. Ind. Electron., 2003, 50, (2), pp. 328335 (doi: 10.1109/TIE.2003.809400).
    18. 18)
      • 23. Aredes, M., Watanabe, E.H.: ‘New control algorithms for series and shunt three phase four wire active filter’, IEEE Trans. Power Deliv., 1995, 10, (3), pp. 16491656 (doi: 10.1109/61.400952).
    19. 19)
      • 22. Huang, S.-J., Chang-Wu, J.: ‘A new control algorithm for three phase three wire active filters under non ideal main voltages’, IEEE Trans. Power Electron., 1999, 14, (4), pp. 30893094.
    20. 20)
      • 29. Rao, U.K., Mishra, M.K., Vincent, G.: ‘An optimization based algorithm for shunt active filter under unbalanced and nonsinusoidal supply voltages’. IEEE Conf. Industrial Electronics and Applications, 2008, pp. 14751480.
    21. 21)
      • 17. Singh, S., Singh, B.: ‘A voltage-controlled PFC Cuk converter-based PMBLDCM drive for air-conditioners’, IEEE Trans. Ind. Appl., 2012, 48, (2), pp. 832838 (doi: 10.1109/TIA.2011.2182329).
    22. 22)
      • 21. Peng, F.Z., Lai, J.-S.: ‘Generalized instantaneous reactive power theory for three-phase power systems’, IEEE Trans. Instrum. Meas., 1996, 45, (1), pp. 293297 (doi: 10.1109/19.481350).
    23. 23)
      • 27. Kamnarn, U., Chunkag, V.: ‘Analysis and design of a modular three phase AC-DC converter using Cuk rectifier module with nearly unity power factor and fast dynamic response’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 20002012 (doi: 10.1109/TPEL.2009.2019575).
    24. 24)
      • 26. Chunkag, V., Kamnarn, U.: ‘Parallelling three phase AC-DC converter using Cuk rectifier modules based on power balance control technique’, IET Power Electron., 2010, 3, (4), pp. 511524 (doi: 10.1049/iet-pel.2008.0209).
    25. 25)
      • 12. Neba, Y., Ishizaka, K., Itoh, R.: ‘Single-phase two-stage boost rectifiers with sinusoidal input current’, IET Power Electron., 2010, 3, (2), pp. 176186 (doi: 10.1049/iet-pel.2008.0174).
    26. 26)
      • 25. Mishra, M.K., Ghosh, A., Joshi, A., Suryawansh, H.M.: ‘A novel method of load compensation under unbalanced and distorted voltages’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 288295 (doi: 10.1109/TPWRD.2006.881579).
    27. 27)
      • 3. Spiazzi, G., Lee, F.C.: ‘Implementation of single-phase boost power-factor-correction circuits in three-phase applications’, IEEE Trans. Ind. Electron., 1997, 44, (3), pp. 365371 (doi: 10.1109/41.585834).
    28. 28)
      • 4. Prasad, A.R., Ziogas, P.D., Manias, S.: ‘An active power factor correction technique for three-phase diode rectifiers’, IEEE Trans. Power Electron., 1991, 6, (1), pp. 8392 (doi: 10.1109/63.65006).
    29. 29)
      • 14. Bortis, D., Waffler, S., Biela, J., Kolar, J.W.: ‘25-kW Three-phase unity power factor buck–boost rectifier with wide input and output range for pulse load applications’, IEEE Trans. Plasma Sci., 2008, 36, (5), pp. 27472752 (doi: 10.1109/TPS.2008.2003532).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0243
Loading

Related content

content/journals/10.1049/iet-pel.2012.0243
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading