access icon free Modified electromagnetic microgenerator design for improved performance of low-voltage energy-harvesting systems

The recent work in literature has shown the potential of energy harvesting as means to power wireless sensors. An energy harvester typically consists of a transducer and low-power management circuits. However, current systems suffer from crude design methodology with no synergy between these two stages. In this work, the authors present two design modules of a modified electromagnetic microgenerator system, which aid in the performance of the associated power converter. Startup is a critical issue for such systems, since the transducer voltage is quite low (a few hundred millivolts AC). For the first design module, a thin piezoelectric strip is added to the electromagnetic microgenerator to provide the start-up power for the converter system. The second module unifies the design of the input filter for the converter with the microgenerator. The microgenerator parasitics are utilised to satisfy the input filter requirements of the converter. Such an approach reduces the overall inductive losses in the system compared with other set-ups reported in the literature. Both the microgenerator and the input filter are fabricated along with a suitable AC–DC boost converter using discrete components. Both simulation and experimental results are shown to demonstrate the start-up capability of such a system and efficacy of the input filter design.

Inspec keywords: AC-DC power convertors; piezoelectric transducers; energy harvesting; electromagnetic devices

Other keywords: low-power management circuits; AC–DC boost converter; converter system; modified electromagnetic microgenerator system design; transducer; inductive losses; wireless sensors; input filter design; low-voltage energy-harvesting systems; piezoelectric strip; discrete components

Subjects: Electromagnetic device applications; Power electronics, supply and supervisory circuits; Energy harvesting; Energy harvesting; Piezoelectric devices

References

    1. 1)
      • 10. Ottman, G.K., Hofmann, H.F., Bhatt, A.C., Lesieutre, G.A.: ‘Adaptive piezoelectric energy harvesting circuit for wireless remote power supply’, IEEE Trans. Power Electron., 2002, 17, pp. 669676 (doi: 10.1109/TPEL.2002.802194).
    2. 2)
      • 12. Khaligh, A., Zeng, P., Zheng, C.: ‘Kinetic energy harvesting using piezoelectric and electromagnetic technologies – state of the art’, IEEE Trans. Ind. Electron., 2010, 57, (3), pp. 850860 (doi: 10.1109/TIE.2009.2024652).
    3. 3)
      • 9. Arroyo, E., Badel, A., Formosa, F.: ‘Synchronized switch harvesting technique applied to electromagnetic vibrations harvester’. Proc. 10th Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS 2010), Tech. Dig. – Poster Sessions, Leuven, Belgium, 2010, pp. 4548.
    4. 4)
      • 5. Rao, Y., Arnold, D.P.: ‘An input-powered active AC/DC converter with zero standby power for energy harvesting applications’. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, 12–16 September 2010, pp. 44414446.
    5. 5)
      • 13. Stephen, N.G.: ‘On energy harvesting from ambient vibration’, J. Sound Vib., 2006, 293, (1–2), pp. 409425 (doi: 10.1016/j.jsv.2005.10.003).
    6. 6)
      • 8. Dayal, R., Dwari, S., Parsa, L.: ‘A new design for vibration-based electromagnetic energy harvesting systems using coil inductance of microgenerator’, IEEE Trans. Ind. Appl., 2011, 47, (2), pp. 820830 (doi: 10.1109/TIA.2010.2101995).
    7. 7)
      • 4. Dayal, R., Dwari, S., Parsa, L.: ‘Design and implementation of a direct AC–DC boost converter for low voltage energy harvesting’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 23872396 (doi: 10.1109/TIE.2010.2069074).
    8. 8)
      • 11. Dwari, S., Parsa, L.: ‘An efficient AC–DC step-up converter for low-voltage energy harvesting’, IEEE Trans. Power Electron., 2010, 25, (8), pp. 21882199 (doi: 10.1109/TPEL.2010.2044192).
    9. 9)
      • 3. Amirtharajah, J.R., Chandrakasan, A.P.: ‘Self-powered signal processing using vibration-based power generation’, IEEE J. Solid-State Circuits, 1998, 33, (5), pp. 687695 (doi: 10.1109/4.668982).
    10. 10)
      • 6. Mitcheson, P.D., Green, T.C., Yeatman, E.M., Holmes, A.S.: ‘Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers’, Microsyst. Technol., 2007, 13, pp. 16291635 (doi: 10.1007/s00542-006-0339-0).
    11. 11)
      • 1. Paradiso, J.A., Starner, T.: ‘Energy scavenging for mobile and wireless electronics’, Pervasive Comput. IEEE, 2005, 4, pp. 1827 (doi: 10.1109/MPRV.2005.9).
    12. 12)
      • 2. El-Hami, M., Glynne-Jones, P., White, N.M., et al: ‘Design and fabrication of a new vibration-based electromechanical power generator’, Sens. Actuators A, 2001, 92, pp. 335342 (doi: 10.1016/S0924-4247(01)00569-6).
    13. 13)
      • 7. Peters, C., Spreemann, D., Ortmanns, M., Manoli, Y.: ‘A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications’, J. Micromech. Microeng., 2008, 18, p. 104005 (doi: 10.1088/0960-1317/18/10/104005).
    14. 14)
      • 14. Dwari, S., Parsa, L.: ‘Efficient low voltage direct AC/DC converters for self-powered wireless sensor nodes and mobile electronics’. IEEE 30th Int. Telecommunications Energy Conf., 2008, INTELEC 2008, 14–18 September 2008, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2011.0503
Loading

Related content

content/journals/10.1049/iet-pel.2011.0503
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading