Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Static synchronous compensators (STATCOM): a review

Static synchronous compensators (STATCOM): a review

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Fast acting static synchronous compensator (STATCOM), a representative of FACTS family, is a promising technology being extensively used as the state-of-the-art dynamic shunt compensator for reactive power control in transmission and distribution system. Over the last couple of decades, researchers and engineers have made path-breaking research on this technology and by virtue of which, many STATCOM controllers based on the self-commutating solid-state voltage-source converter (VSC) have been developed and commercially put in operation to control system dynamics under stressed conditions. Because of its many attributes, STATCOM has emerged as a qualitatively superior controller relative to the line commutating static VAR compensator (SVC). This controller is called with different terminologies as STATic COMpensator advanced static VAR compensator, advanced static VAR generator or static VAR generator, STATic CONdenser, synchronous solid-state VAR compensator, VSC-based SVC or self-commutated SVC or static synchronous compensator (SSC or S2C). The development of STATCOM controller employing various solid-state converter topologies, magnetics configurations, control algorithms, switching techniques and so on, has been well reported in literature with its versatile applications in power system. A review on the state-of-the-art STATCOM technology and further research potential are presented classifying more than 300 research publications.

References

    1. 1)
      • Z. Saad Saoud , M.L. Lisboa , J.B. Ekanayake , N. Jenkins , G. Strbac . Application of STATCOMs to wind farms. IEE Proc. Gener. Transm. Distrib. , 5 , 511 - 516
    2. 2)
      • Yonezawa, H., Tsukada, M., Paserba, J.J.: `Study of a STATCOM application for voltage stability evaluated by dynamic PV curves and time simulations', IEEE PES WM 2000, 2, p. 1471–1476.
    3. 3)
      • H. Akagi , S. Inoue , T. Yoshii . Control and performance of a transformerless cascade PWM STATCOM with Star configuration. IEEE Trans. Ind. Appl. , 4 , 1041 - 1049
    4. 4)
      • Karami, A., Rashidinejad, M., Gharaveisi, A.A.: `Optimal location of STATCOM for voltage security enhancement via artificial intelligent', IEEE Int. Conf. Industrial Technology, ICIT, 2006, p. 2704–2708.
    5. 5)
    6. 6)
      • J.E. Hills , W.T. Norris . Exact analysis of a multipulse shunt converter compensator or STATCOM. II: Analysis. IEE Proc. Gener. Transm. Distrib. , 2 , 219 - 224
    7. 7)
    8. 8)
      • Mwinyiwiwa, B., Wolanski, Z., Boon-Teck, O.: `Multilevel STATCOM with third harmonic elimination on the DC link capacitor voltages', IEEE Power Electronics Specialists Conf., PESC'97 Record, 28th Annual Meeting, 1997, 1, p. 317–322.
    9. 9)
    10. 10)
      • Wen, X., Yin, X., Hanxiang, C.: `The general mathematical model and performance analysis of multi-pulse three-level STATCOM', IEEE Int. Conf. Electric Machines & Drives, IEMDC, 2007, 1, p. 760–765.
    11. 11)
      • Cho, G.C., Jung, G.H., Choi, N.S., Cho, G.H.: `Control of static VAR compensator (SVC) with DC voltage regulation and fast dynamics by feedforward and feedback loop', 26thAnnual IEEE Power Electronics Specialist Conf., PESC'95, 18–22 June 1995, p. 367–374.
    12. 12)
      • H. Akagi , E.H. Watanabe , M. Aredes . (2007) Instantaneous power theory and applications to power conditioning.
    13. 13)
      • B. Singh , R. Saha . A review on FACTS devices. ICFAI J. Sci. Technol. , 2 , 6 - 51
    14. 14)
      • Wenhua, L., Xu, L., Feng, L., Chenglian, L., Hang, G.: `Development of 20MVA static synchronous compensator', IEEE Power Engineering Society WM 2000, 4, p. 2648–2653.
    15. 15)
      • Venayagamoorthy, G.K., del Valle, Y., Mohagheghi, S.: `Effects of a STATCOM, a SCRC and a UPFC on the dynamic behavior of a 45 bus section of the Brazilian power system', IEEE Proc. PES Conf. Exposition in Africa, 2005, p. 305–312.
    16. 16)
    17. 17)
      • Amin, A.M.A.: `A multilevel advanced static VAR compensator with current hysteresis control', IEEE Proc. Int. Symp. Industrial Electronics, ISIE, 1999, 2, p. 837–842.
    18. 18)
      • C.F. Lu , C.C. Liu , C.J. Wu . Dynamic modeling of energy storage system and application to power system stability. IEE Proc. Gener. Transm. Distrib. , 4 , 429 - 435
    19. 19)
      • Paice, D.A.: `Optimized 18-pulse type AC/DC, or DC/AC, converter system', U.S., 5 124 904, 23 June 1992.
    20. 20)
    21. 21)
    22. 22)
      • Mak, L.O., Yixin, N.: `Design of fuzzy logic supplementary controller for STATCOM using polar coordinate variables', Proceedings of the IEEE Region 10 Conf. TENCON ’98, 1999, 2, p. 891–894.
    23. 23)
      • Kamath, G.R., Holenarsipur, P.S.S., Mohan, N.: `EMTP simulations and experimental verification of an all-active hybrid converter arrangement for filtering power system harmonics and STATCOM', Proc. 8th Int. Conf. Harmonics and Quality of Power, 1998, 1, p. 611–616.
    24. 24)
      • Mwinyiwiwa, B., Wolanski, Z., Boon-Teck, O.: `Current equalization in SPWM FACTS controllers at lowest switching rates', IEEE Power Electronics Specialists Conf., PESC'97 Record, 28th Annual Meeting, 1, p. 325–330.
    25. 25)
      • B.-T. Ooi , G. Joos , X. Huang . Operating principles of shunt STATCOM based on 3-level diode-clamped converters. IEEE Power Deliv. , 4 , 1504 - 1510
    26. 26)
      • H. Chong , Y. Zhanoning , C. Bin , A.Q. Huang , Z. Bin , M.R. Ingram , A. Edris . Evaluation of cascade-multilevel-converter-based STATCOM for arc furnace flicker mitigation. IEEE Trans. Ind. Appl. , 2 , 378 - 385
    27. 27)
      • Ai-jun, H., Wen-jin, C.: `Effects of sudden increase of dynamic loads on the voltage stability of South China power grid and solutions with STATCOM Application', IEEE/PES Transmission and Distribution Conf. Exhibition, 2005, Asia and Pacific, p. 1–6.
    28. 28)
      • Yong-gao, Z., Yong, K., Xiao-yuan, L., Li-ming, L., Peng-cheng, Z.: `A novel double loop control design and analysis of STATCOM', 32ndIEEE Annual Conf. Industrial Electronics Society, IECON, 2005, p. 6.
    29. 29)
      • Kincic, S., Chandra, A., Babic, S.: `Five level diode clamped voltage source inverter and its application in reactive power compensation', IEEE Large Engineering Systems Conf. Power Engineering, LESCOPE, 2002, p. 86–92.
    30. 30)
    31. 31)
      • Ammari, S., Besanger, Y., Hadjsaid, N., Georges, D.: `Robust solutions for the interaction phenomena between dynamic loads and facts controllers', IEEE PES SM, 2000, 1, p. 401–406.
    32. 32)
      • G.J. Wakileh . (2001) Power systems harmonics: fundamentals, analysis and filter design.
    33. 33)
      • Shen, D., Liu, W., Wang, Z.: `Study on the operation performance of STATCOM under unbalanced and distorted system voltage', IEEE Power Engineering Society WM 2000, 4, p. 2630–2635.
    34. 34)
      • P. Garcia Gonzaleg , A. Garcia Corrada . Control system for a PWM-based STATCOM. IEEE Trans. Power Deliv. , 4 , 1252 - 1257
    35. 35)
    36. 36)
      • Voraphonpiput, N., Chatratana, S.: `STATCOM analysis and controller design for power system voltage regulation', IEEE/PES Transmission and Distribution Conf. Exhibition, 2005, Asia and Pacific, p. 1–6.
    37. 37)
      • Qingguang, Y., Renjie, D., Yingduo, H., Zhonghong, W.: `The asymmetric control strategy of ASVG', Proc. 3rd World Congress 2000, Intelligent Control and Automation, 1, p. 432–434.
    38. 38)
      • C. Schauder , M. Gernhardt , E. Stacey . Operation of ±100 MVAR TVA STATCON. IEEE Trans. Power Deliv. , 4 , 1805 - 1811
    39. 39)
      • Castro, M.S., Nassif, A.B., da Costa, V.F., da Silva, L.C.P.: `Impacts of FACTS controllers on damping power systems low frequency electromechanical oscillations', IEEE/PES Transmission and Distribution Conf. Exposition, 2004, Latin America, p. 291–296.
    40. 40)
    41. 41)
      • Ni, Y., Jiao, L., Chen, S., Zhang, B.: `Application of a nonlinear PID controller on STATCOM with a differential tracker', Proc. Int. Conf. Energy Management Power Delivery, EMPD ’98, 1998, 1, p. 29–34.
    42. 42)
      • R.H. Allen . An investigation of the drive circuit requirements for the power insulated gate bipolar transistor (IGBT). IEEE Trans. Power Electron. , 2 , 208 - 219
    43. 43)
      • Li, C., Jiang, Q., Wang, Z., Retzmann, D.: `Design of a rule-based controller for STATCOM', Proc. Industrial Electronics Society, IECON ’98. 24th Annual Conf., 1998, 1, p. 467–472.
    44. 44)
      • Qirong, J., Dong, S., Yingduo, H., Zhonghong, W.: `Operation and control of ASVG under asymmetric conditions', IEEE Proc. Int. Conf. Power Electronics and Drive Systems, 26–29 May 1997, 1, p. 408–412.
    45. 45)
    46. 46)
      • Muyeen, S.M., Mannan, M.A., Hasan Ali, M., Takahashi, R., Murata, T., Tamura, J.: `Stabilization of grid connected wind generator by STATCOM', IEEE Int. Conf. Power Electronics and Drives Systems, PEDS, 2005, 2, p. 1584–1589.
    47. 47)
      • Sybille, G.: `Digital simulation of power systems and power electronics using MATLAB/Simulink power system blockset', IEEE Power Engineering Society WM 2000, Special Technical Session, 4, p. 2973–2982.
    48. 48)
    49. 49)
      • Yatim, A.H.B.M.: `Simulation of a PWM reactive power compensator using PSPICE', IEEE TENCON, 1993, Beijing, p. 314–317.
    50. 50)
      • Giroux, P., Sybille, G., Le-Huy, H.: `Modeling and simulation of a distribution STATCOM using Simulink's power system blockset', IEEE 27th Annual Conf. Industrial Electronics Society, IECON'01, 2, p. 990–994.
    51. 51)
    52. 52)
      • Liang, X., Liu, W.-H., Jiang, Q.-R.: `Development of a voltage source inverter based static VAR generator', Energy Conservation Engineering Conf., IECEC 96 Proc. 31st Intersociety, 11–16 August 1996, 1, p. 611–616.
    53. 53)
      • Chen, W., Liu, Y., Chen, J., Wu, J.: `Control of advanced static VAR generator by using recurrent neutral networks', Proc. Power System Technology, Int. Conf., POWERCON'98, 18–21 August 1998, 2, p. 839–842.
    54. 54)
    55. 55)
      • Enslin, J.H.R.: `Unified approach to power quality mitigation', IEEE Int. Symp. Industrial Electronics, ISIE ’98 Proc., 1, p. 8–20.
    56. 56)
    57. 57)
    58. 58)
      • Walker, L.H.: `Capacitance control for a static VAR generator', U.S., 4 602 206, 22 July 1986.
    59. 59)
    60. 60)
      • Larsson, T., Poumarade, C.: `STATCOM: an efficient means for flicker mitigation', IEEE Power Engineering Society WM, 1999, 2, p. 1208–1213.
    61. 61)
    62. 62)
      • Liu, Y.H., Watson, N.R., Arrillaga, J., Perera, L.B.: `Multi-level current reinjection CSC for STATCOM application', IEEE Int. Conf. Power System Technology, Powercon, 2006, p. 1–5.
    63. 63)
      • Lauttamus, P., Tuusa, H.: `Comparison of five-level voltage-source inverter based STATCOMs', Power Conversion Conf. – Nagoya, PCC, 2007, p. 659–666.
    64. 64)
    65. 65)
    66. 66)
    67. 67)
      • P. Kundur . (1994) Power system stability and control.
    68. 68)
      • B.N. Singh , A. Chandra , K. Al-Haddad . DSP-based indirect-current-controlled II STATCOM: multifunctional capabilities. Proc. IEE Electr. Power Appl. , 2 , 113 - 118
    69. 69)
    70. 70)
      • Reed, G.F., Takeda, M., Iyoda, I.: `Improved power quality solutions using advanced solid-state switching and static compensation technologies', IEEE Power Engineering Society WM, 1999, 2, p. 1132–1137.
    71. 71)
      • Natesan, R., Radman, G.: `Effects of STATCOM, SSSC and UPFC on voltage stability', 36thSoutheastern Symp. Proc. System Theory, 2004, p. 546–550.
    72. 72)
    73. 73)
    74. 74)
      • Draou, A., Benghanem, M., Tahri, A.: `Control and dynamic analysis of a static VAR compensator using a three level inverter topology', IEEE Proc. 12th Int. Conf. Microelectronics, ICM, 2000, p. 353–356.
    75. 75)
      • Sybille, G., Brunelle, P., Le-Huy, H., Dessaint, L.A., Al-Haddad, K.: `Theory and application of power system blockset, a MATLAB/Simulink-based simulation tool for power systems', IEEE Power Engineering Society WM, 2000, 1, p. 774–779.
    76. 76)
    77. 77)
    78. 78)
      • Petitclair, P., Besanger, Y., Bacha, S., Hadjsaid, N.: `FACTS modeling and control: applications to the insertion of a STATCOM on power system', IEEE IAS '97 Conf., 32nd Annual Meeting Record, 1997, 3, p. 2213–2217.
    79. 79)
    80. 80)
      • C.W. Edwards , P.R. Nannery , K.E. Mattern , J. Gubernick . Advanced static VAR generator employing GTO thyristors. IEEE Trans. Power Deliv. , 4 , 1622 - 1627
    81. 81)
      • Escobar, G., Stankovic, A.M., Mattavelli, P.: `Reactive power and unbalance compensation using STATCOM with dissipativity-based control', IEEE Industry Applications Conf., October 2000, 4, p. 2058–2065.
    82. 82)
      • Jessee, R.D.: `Voltage and harmonic control of a multi-pole inverter', U.S., 5 212 629, 18 May 1993.
    83. 83)
      • Zhuang, Y., Menzies, R.W.: `Effect of DC capacitance of a STATCON on the dynamic performance at a weak HVDC terminal', IEEE Proc. WESCANEX'95 Communications, Power and Computing Conf., 1995, 2, p. 289–293.
    84. 84)
      • Akagi, H.: `Prospects of new technologies for power electronics in the 21st century', IEEE PES Transmission and Distribution Conf. Exhibition, 6–10 October 2002, Asia Pacific, Yokohama, Japan.
    85. 85)
      • Larsson, T., Grunbaum, R., Ratering Schnitzler, B.: `SVC light: a utility's aid to restructuring its grid', IEEE Power Engineering Society WM, 2000, 4, p. 2577–2581.
    86. 86)
      • Mwinyiwiwa, B., Wolanski, Z., Boon-Teck, O., Chen, Y.: `Multilevel converters as series VAR compensators', IEEE Power Electronics Specialists Conf., PESC'97, 22–27 June 1997, 1, p. 338–343.
    87. 87)
      • Keshavan, B.K., Prabhu, N.: `Damping of subsynchronous oscillations using STATCOM – a FACTS controller', Int. Conf. Power System Technology, PowerCon, 2004, 1, p. 12–16.
    88. 88)
      • Gyugyi, L., Stacey, E.J.: `Phase displaced, multiple inverter bridge circuits with waveform notching for harmonic elimination', U.S., 5 168 437, 1 December 1992.
    89. 89)
    90. 90)
      • Collins, C.D., Wood, A.R., Watson, N.R.: `Unbalanced STATCOM analysis in the harmonic domain', 11thInt. Conf. Harmonics and Quality of Power, 2004, p. 232–237.
    91. 91)
      • S. Morris , P.K. Dash , K.P. Basu . A fuzzy variable structure controller for STATCOM. Electr. Power Syst. Res.
    92. 92)
      • E. Acha , C.R. Fuerte-Esquivel , H. Ambriz-Pérez , C. Angeles-Camacho . (2004) FACTS: modelling and simulation in power networks.
    93. 93)
      • M.S. El-Moursi , A.M. Sharaf . Novel controllers for the 48-pulse VSC STATCOM and SSSC for voltage regulation and reactive power compensation. IEEE Trans. Power Syst. , 4 , 1985 - 1997
    94. 94)
      • Sobtink, K.H., Renz, K.W., Tyll, H.: `Operational experience and field tests of the SVG at Rejsby Hede', Proc. Power System Technology, POWERCON'98, Int. Conf., 1, p. 318–322.
    95. 95)
      • Larsson, T., Edris, A., Kidd, D., Aboytes, F.: `Eagle Pass Back to Back Tie: a dual purpose application of voltage source technology', IEEE PES, Vancouver SM, 15–19 July 2001.
    96. 96)
      • Choo, J.B., Yoon, J.S., Chang, B.H., Ham, B., Koh, K.K.: `Development of FACTS operation technology to the KEPCO power network – detailed EMTDC model of 80 MVA UPFC', IEEE/PES Transmission and Distribution Conf. Exhibition, 2002, 1, Asia Pacific, p. 354–358.
    97. 97)
      • Wuest, D.: `An improved PWM optimization method for a static reactive power compensator with self-commutated inverter', PESC Power Electr. Specialists Conf., 1991, Cambridge, MA, p. 521–529.
    98. 98)
      • Farsangi, M.M., Song, Y.H., Lee, K.Y.: `On selection of supplementary input signals for STATCOM to damp inter-area oscillations in power systems', IEEE PES GM, 2005, 3, p. 3068–3073.
    99. 99)
    100. 100)
      • Tennakoon, S.B., Scheidecker, D.: `Multi-level converters for static VAR compensation', Update on New Power Electronic Techniques (Digest No. 1997/091), IEE Colloquium, 23 May 1997, p. 4/1–4/6.
    101. 101)
      • P.K. Steimer , H.E. Gruning , J. Werninger , E. Carrol , S. Klaka , S. Linder . IGCT – a new engineering technology for high power low cost inverters. IEEE Ind. Appl. Mag. , 12 - 18
    102. 102)
      • Barrena, J.A., Aurtenechea, S., Canales, J.M., Rodriguez, M.A., Marroyo, L.: `Design, analysis and comparison of multilevel topologies for DSTATCOM applications', European Conf. Power Electronics and Applications, 2005, p. 10.
    103. 103)
      • Shen, D., Liang, X., Han, Y.: `A modified per-unit STATCOM model and analysis of open loop response time', IEEE Power Engineering Society WM 2000, 4, p. 2624–2629.
    104. 104)
    105. 105)
      • Abido, M.A.: `Design of PSS and STATCOM-based damping stabilizers using genetic algorithms', IEEE PES GM, 2006, p. 8.
    106. 106)
      • K.R. Padiyar . (2007) FACTS controllers in power transmission and distribution.
    107. 107)
      • Benghanem, M., Tahri, A., Draou, A.: `Performance analysis of advanced static VAR compensator using three-level inverter', IEEE Proc. 11th Int. Conf. Microelectronics, ICM, 1999, p. 295–298.
    108. 108)
    109. 109)
      • Sode-Yome, A., Mithulananthan, N., Lee, K.Y.: `Static voltage stability margin enhancement using STATCOM, TCSC and SSSC', IEEE/PES Transmission and Distribution Conf. Exhibition, 2005, Asia and Pacific, p. 1–6.
    110. 110)
      • L.T. Moran , P.D. Ziogas , G. Joos . Analysis and design of a three-phase synchronous solid-state VAR compensator. IEEE Trans. Ind. Appl. , 4 , 598 - 608
    111. 111)
      • Sutanto, D., Snider, L.A., Mok, K.L.: `EMTP simulation of a STATCOM using hysteresis current control', IEEE Proc. Int. Conf. Power Electronics and Drive Systems, PEDS'99, 1999, 1, p. 531–535.
    112. 112)
      • H. Fujita , S. Tominaga , H. Akagi . Analysis and design of a DC voltage-controlled static VAR compensator using quad-series voltage-source inverters. IEEE Trans. Ind. Appl. , 4 , 970 - 978
    113. 113)
      • Schauder, C.D., Williams, S.L.: `Three phase DC-to-AC power inverter with three level poles', U.S., 5 889 668, 30 March 1999.
    114. 114)
      • Rahim, A.H.M.A., Al-Baiyat, S.A., Kandlawala, F.M.: `A robust STATCOM controller for power system dynamic performance enhancement', IEEE PES, Vancouver, SM 2001, 15–19 July 2001, 2, p. 887–892.
    115. 115)
      • B. Singh , K. Al-Haddad , A. Chandra . A new control approach to three-phase active filter for harmonics and reactive power compensation. IEEE Trans. Power Syst. , 2 , 133 - 138
    116. 116)
      • Akagi, Y., Ito, N., Shimoda, T.: `Power conversion system with instantaneous real power feedback control', U.S., 5 136 494, 4 August 1992.
    117. 117)
      • H.A. Kojori , S.B. Dewan , J.D. Lavers . A large-scale PWM solid state synchronous condenser. IEEE Trans. Ind. Appl. , 1 , 41 - 49
    118. 118)
      • Masdi, H., Mariun, N., Bashi, S.M., Mohamed, A., Yusuf, S.: `Design of a prototype D-Statcom using DSP controller for voltage sag mitigation', IEEE Int. Conf. Power Electronics and Drives Systems, PEDS, 2006, 1, p. 569–574.
    119. 119)
      • R.M. Mathur , R.K. Verma . (2002) Thyristor-based FACTS controllers for electrical transmission systems.
    120. 120)
    121. 121)
      • Ye, Y., Kazerani, M.: `Operating constraints of FACTS Devices', IEEE, PES SM, 2000, 3, p. 1579–1584.
    122. 122)
      • Hirose, S.: `Reactive power controller without initial abrupt disturbance on power source', U.S., 5 051 683, 24 September 1991.
    123. 123)
      • N.G. Hingorani , L. Gyugyi . (1999) Understanding FACTS.
    124. 124)
      • An, T., Powell, M.T., Thanawala, H.L., Jenkins, N.: `Assessment of two different STATCOM configurations for FACTS application in power systems', Proc. Power System Technology, POWERCON'98 Int. Conf., 1998, 1, p. 307–312.
    125. 125)
    126. 126)
      • Schauder, C.: `STATCOM for compensation of large electric arc furnace installations', IEEE Power Engineering Society SM, 1999, 2, p. 1109–1112.
    127. 127)
      • Tang, Y., Xu, L.: `A new converter topology for advanced static VAR compensation in high power applications', IEEE Industry Applications Society Annual Meeting, Conf. Record, 2–8 October 1993, 2, p. 947–953.
    128. 128)
      • Paice, D.A.: `Simplified WYE connected 3-phase to 9-phase auto-transformer', U.S., 6 525 951, 25 February 2003.
    129. 129)
      • Uzunovic, E., Fardanesh, B., Hopkins, L., Shperling, B., Zelingher, S., Schuff, A.: `NYPA convertible static compensator (CSC) application phase I: STATCOM', IEEE/PES Transmission and Distribution Conf. Exposition, 2001, 2, p. 1139–1143.
    130. 130)
      • Paice, D.A.: `Multi-pulse converter system', U.S., 4 876 634, 24 October 1989.
    131. 131)
    132. 132)
    133. 133)
      • Malesani, L., Tomasin, P.: `PWM current control techniques of voltage source converters – a survey', Int. Conf. Proc. Industrial Electronics, Control and Instrumentation, IECON'93, 15–19 November 1993, 2, p. 670–675.
    134. 134)
    135. 135)
      • Thukaram, D., Khincha, H.P., RaviKumar, B.: `Harmonic minimization in the operation of static VAR compensators for unbalanced reactive power compensation', IEEE Int. Conf. Power System Technology, POWERCON, 2004, p. 328–334.
    136. 136)
    137. 137)
      • Fujii, T., Chisyaki, H., Teramoto, H.: `Coordinated voltage control and continuous operation of the 80 MVA STATCOM under commercial operation', Power Conversion Conf., Nagoya, 2007, p. 969–974.
    138. 138)
    139. 139)
    140. 140)
      • R.C. Knight , D.J. Young , D.R. Trainer . Relocatable GTO-based static VAR compensator for NGC substations.
    141. 141)
    142. 142)
      • Gun-Woo, M., Suk-Ho, Y.: `Predictive current control of distribution static condenser (D-STATCON) for reactive power compensation in flexible AC transmission system (FACTS)', IEEE Power Electronics Specialists Conf., PESC'98 Record, 29th Annual Meeting, 1998, 1, p. 816–822.
    143. 143)
      • A.T. Johns , A. Ter-Gazarian , D.F. Warne . (1999) Flexible AC transmission systems (FACTS).
    144. 144)
      • Hill, J.E.: `A practical example of the use of distribution static compensator (D-STATCOM) to reduce voltage fluctuations', IEE Colloq. Power Electronics for Renewable Energy (Digest No. 1997/170), 1997, p. 7/1–7/5.
    145. 145)
      • Li, C., Jiang, Q., Xie, X., Wang, Z.: `Rule-based control for STATCOM to increase power system stability', Proc. Int. Conf. Power System Technology, POWERCON, 1998, 1, p. 372–376.
    146. 146)
      • Xie, H., Angquist, L., Nee, H.P.: `Active power compensation of voltage source converters with energy storage capacitors', IEEE PES Power Systems Conf. Exposition, PSCE, 2006, p. 1012–1019.
    147. 147)
      • Walker, L.H.: `Control system for a current source converter supplying an AC bus', U.S., 5 041 959, 20 August 1991.
    148. 148)
      • C.K. Lee , S.K. Joseph Leung , S.Y. Ron Hui , H.S.-H. Chung . Circuit-level comparison of STATCOM technologies. IEEE Trans. Power Electron. , 4 , 208 - 219
    149. 149)
      • E. Acha , V.G. Agelidis , O. Anaya-Lara , T.J.E. Miller . (2002) Power electronics control in electrical systems.
    150. 150)
      • Sato, T., Mori, Y., Matsushita, Y., Ogusa, S., Morishima, T.N., Iyoda, I.: `Study on the system analysis method of STATCOM based on ten-years’ field experience', IEEE PES Transmission and Distribution Conf. Exhibition, 6–10 October 2002, Asia Pacific, Yokohama, Japan.
    151. 151)
      • Xi, Z., Bhattacharya, S.: `STATCOM operation strategy under power system faults', IEEE PES GM, 2007, p. 1–8.
    152. 152)
    153. 153)
    154. 154)
      • R.M. Mathur . (1984) Static compensators for reactive power control.
    155. 155)
      • Scarfone, A.W., Oberlin, B.K., James, P., Luca, D., Hanson, D.J., Horwill, C.: `A ±150 MVAR STATCOM for Northeast Utilities’ Glenbrook substation'', IEEE PES GM, 2003, 3, p. 1834–1839.
    156. 156)
    157. 157)
      • Passelergue, J.C., Hadjsaid, N., Georges, D., Feuillet, R., Hanneton, V., Vitet, S.: `An efficient index to deal with interaction phenomena of FACTS devices in power systems', Proc. Power System Technology, POWERCON'98 Int. Conf., 1, p. 401–405.
    158. 158)
    159. 159)
      • L. Kuang , L. Jinjun , W. Zhaoan , W. Biao . Strategies and operating point optimization of STATCOM control for voltage unbalance mitigation in three-phase three-wire systems. IEEE Trans. Power Deliv. , 1 , 413 - 422
    160. 160)
    161. 161)
      • Petitclair, P., Bacha, S., Ferrieux, J.P.: `Optimized linearization via feedback control law for a STATCOM', IEEE IAS ’97, 32nd IAS Annual Meeting 1997, Conf. Record, 2, p. 880–885.
    162. 162)
      • Das, B., Ghosh, A., Sachchidanand, : `Comparison of performance of two configurations of ASVC for power transfer enhancement', TENCON '98, IEEE Region 10 Int. Conf. Global Connectivity in Energy, Computer, Communication and Control, 1998, 2, p. 466–469.
    163. 163)
      • N. Seki , H. Uchino . Converter configurations and switching frequency for a GTO reactive power compensator. IEEE Trans. Ind. Appl. , 4 , 1011 - 1018
    164. 164)
      • B. Singh , R. Saha . Modeling of 18-pulse STATCOM for power system applications. J. Power Electron. , 146 - 158
    165. 165)
      • Reed, G.F., Takeda, M., Ojima, F., Sidell, A.P., Chervus, R.E., Nebecker, C.K.: `Application of a 5 MVA, 4.16 kV D-STATCOM system for voltage flicker compensation at Seattle iron & metals', IEEE PES SM, 2000, p. 1605–1611.
    166. 166)
    167. 167)
    168. 168)
    169. 169)
    170. 170)
    171. 171)
      • V.K. Sood . (2004) HVDC and FACTS controllers: applications of static converters in power systems.
    172. 172)
      • Mwinyiwiwa, B., Wolanski, Z., Yiqiang, C., Boon-Teck, O.: `Multimodular multilevel converters with input/output linearity', IEEE 31st IAS Annual Meeting, Conf. Record, 1996, 2, p. 988–992.
    173. 173)
      • Tahri, A., Draou, A., Benghanem, M.: `A fast current control strategy of a PWM inverter used for static VAR compensation', Proc. IEEE 24th Annual Conf. Industrial Electronics Society, IECON'98, 31 August–4 September 1998, 1, p. 450–455.
    174. 174)
      • J. Arrillaga , Y.H. Liu , N.R. Watson . (2007) Flexible power transmission – the HVDC options.
    175. 175)
      • Y.H. Liu , J. Arrillaga , N.R. Watson . Multi-level voltage reinjection – a new concept in high voltage source conversion. IEEE Proc. Gener. Trans. Distrib. , 3 , 290 - 298
    176. 176)
    177. 177)
    178. 178)
      • Hingorani, N.G.: `FACTS Technology – state of the art, current challenges and the future prospects', IEEE PES GM, 2007, p. 1–4.
    179. 179)
    180. 180)
      • Schauder, C., Gernhardt, M., Stacey, E.: `TVA STATCON project: design, installation and commissioning', CIGRE, 1996, Paper 14–106.
    181. 181)
      • N.G. Hingorani . High power electronics and flexible AC transmission system. IEEE Power Eng. Rev. , 7 , 3 - 4
    182. 182)
      • C. Schauder , L. Gyugyi , E. Stacey . AEP UPFC project: installation, commissioning and operation of the ±160 MVA STATCOM (phase I). IEEE Trans. Power Deliv. , 4 , 1530 - 1535
    183. 183)
      • Baker, M.H., Trow, R.J.: `New FACTS controllers and how to assess them', Fourth Int. Conf. Advances in Power System Control, Operation and Management, APSCOM-97 (Conf. Publ. No. 450), 1997, 1, p. 42–47.
    184. 184)
      • Xiaorong, X., Jian, L., Jinyu, X., Yingduo, H.: `Inter-area damping control of STATCOM using wide-area measurements', IEEE Int. Conf. Proc. Electric Utility Deregulation, Restructuring and Power Technologies, DRPT, 2004, 1, p. 222–227.
    185. 185)
    186. 186)
      • Wang, L., Tsai, Z.-Y.: `Stabilization of generator oscillations using PID STATCON damping controllers and PID power system stabilizers', IEEE Power Engineering Society 1999 WM, 1999, 1, p. 616–621.
    187. 187)
      • Hanson, J.D., Horwill, C., Loughran, J., Monkhouse, R.D.: `The application of a relocatable STATCOM-based SVC on the UK National Grid system', IEEE/PES Transmission and Distribution Conf. Exhibition, 2002, Asia Pacific, 2, p. 1202–1207.
    188. 188)
      • Marra, E.G., Pomilio, J.A.: `Self-excited induction generator controlled by a VS-PWM bi-directional converter for rural applications', Applied Power Electronics Conf. Exposition Proc., 13th Annual APEC'98, 15–19 February 1998, 1, p. 116–122.
    189. 189)
      • Chen, H., Zhou, R., Wang, Y.: `Analysis of voltage stability enhancement by robust nonlinear STATCOM control', IEEE PES SM 2000, 3, p. 1924–1929.
    190. 190)
      • Min, W., Min, J., Choi, J.: `Control of STATCOM using cascade multilevel inverter for high power application', IEEE Proc. Int. Conf. Power Electronics Drive Systems, PEDS, 1999, 2, p. 871–876.
    191. 191)
      • Ghasemi, H., Canizares, C.A.: `Validation of a STATCOM transient stability model through small-disturbance stability studies', IEEE Int. Conf. System of Systems Engineering, SoSE, 2007, p. 1–6.
    192. 192)
    193. 193)
      • Schauder, C.D.: `Transmission line power controller with a continuously controllable voltage source responsive to a real power demand and a reactive power demand', U.S., 5 734 257, 31 March 1998.
    194. 194)
      • Murillo, J.L., Ramirez, J.M.: `Three-phase voltage stability studies embedding a STATCOM', IEEE PES GM, 2006, p. 6.
    195. 195)
      • Peng, F.Z., Wang, J.: `A universal STATCOM with delta-connected cascade multilevel inverter', IEEE 35th Annual Power Electronics Specialists Conf., PESC, 2004, 5, p. 529–3533.
    196. 196)
      • Divan, D., Johal, H.: `Distributed FACTS – a new concept of realizing grid power flow control', IEEE Power Electronics Specialist Conf., PESC, 2005, p. 8–14.
    197. 197)
      • Shen, C., Yang, Z., Crow, M.L., Atcitty, S.: `Control of STATCOM with energy storage device', IEEE PES WM, 2000, 4, p. 2722–2728.
    198. 198)
      • Zhang, B.M., Ding, Q.F.: `The development of FACTS and its control', Fourth Int. Conf. Advances in Power System Control, Operation and Management, APSCOM-97 (Conf. Publ. No. 450), 1997, 1, p. 48–53.
    199. 199)
    200. 200)
      • Wilkosz, K., Sobierajski, M., Kwasnicki, W.: `The analysis of harmonic generation of SVC and STATCOM by EMTDC/PSCAD simulations', Proc. 8th Int. Conf. Harmonics and Quality of Power, 1998, 2, p. 853–858.
    201. 201)
      • H. Akagi , Y. Kanazawad , A. Nabae . Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans. Ind. Appl. , 3 , 625 - 630
    202. 202)
    203. 203)
    204. 204)
      • A. Ghosh , G. Ledwich . (2002) Power quality enhancement using custom power devices.
    205. 205)
      • Baker, R.: `High voltage converter circuit', U.S., 4 203 151, 13 May 1980.
    206. 206)
      • Liu, Y.H., Arrillaga, J., Watson, N.R.: `STATCOM performance of a multi-level voltage reinjection converter', IEEE/PES Transmission and Distribution Conf. Exhibition, 2005, Asia and Pacific, p. 1–6.
    207. 207)
    208. 208)
      • Akagi, Y., Ito, N., Shimoda, T.: `Power converter/inverter system with instantaneous real power feedback control', U.S., 5 373 223, 13 December 1994.
    209. 209)
      • Choo, J.B., Chang, B.H., Ham, B., Lee, H.S., Shin, H.S., Koh, K.K.: `Development of FACTS operation technology to the KEPCO power network-installation and operation', IEEE/PES Transmission and Distribution Conf. Exhibition, 2002, 3, Asia Pacific, p. 2008–2013.
    210. 210)
    211. 211)
      • Ekstrom, A., Lamell, P., Jiang, Y., de Oliveira, M., Long, W.: `Studies of the performance of an advanced static VAR Compensator, STATCON, as compared with a conventional SVC', EPRI Flexible AC Transmission System (FACTS 3) Conf, 5–7 October 1994, Baltimore, MD.
    212. 212)
      • H.F. Wang , F. Li . Multivariable sampled regulators for the co-ordinated control of STATCOM AC and DC voltage. Proc. IEE Gener. Transm. Distrib. , 2 , 93 - 98
    213. 213)
      • Singh, B., Saha, R.: `A new 24-pulse STATCOM for voltage regulation', IEEE Int. Conf. Power Electronics, Drives and Energy Systems, PEDES, 2006, p. 5.
    214. 214)
      • Mishra, M.K., Ghosh, A., Joshi, A.: `Control strategies for capacitor voltage equalization in neutral clamped shunt compensator', IEEE PES WM, 2001.
    215. 215)
      • Pastos, D.A., Giannakopoulos, G.B., Vovos, N.A.: `Influence of the real power modulation provided by a shunt compensator on damping power swings', IEEE Proc. 3rd Int. Conf. Electronics, Circuits and Systems, ICECS’96, 2, p. 884–887.
    216. 216)
      • Yuan, Z., Song, Q., Liu, W., Chen, Y., Teng, L.: `Development of a scaled STATCOM prototype based on 21-level cascade H-bridge inverter', 32ndIEEE Annual Conf. Industrial Electronics Society, IECON, 2005, p. 6.
    217. 217)
      • Paice, D.A.: `Transformers for multipulse AC/DC converters', U.S., 6 101 113, 8 August 2000.
    218. 218)
    219. 219)
    220. 220)
      • L.T. Moran , P.D. Ziogas , G. Joos . Analysis and design of a novel 3-ϕ solid-state power factor compensator and harmonic suppressor system. IEEE Trans. Ind. Appl. , 4 , 609 - 619
    221. 221)
      • Paice, D.A.: `Transformer for 12-pulse series connection of converters', U.S., 5 781 428, 14 July 1998.
    222. 222)
      • Ponnaluri, S., Steinke, J.K., Steimer, P., Reichert, S., Buchmann, B.: `Design comparison and control of medium voltage STATCOM with novel twin converter topology', 35thIEEE Annual Power Electronics Specialists Conf., PESC, 2004, 4, p. 2546–2552.
    223. 223)
      • Crow, M.L., Cheng, Y.: `Control scheme for the STATCOM/BESS using diode-clamped multilevel inverter', Proc. 34th North American Power Symp., 13–15 October 2002, p. 572–576.
    224. 224)
      • Tominaga, S., Fujita, H., Akagi, H.: `Application of zero-voltage-switching to a DC voltage controlled static VAR compensator using quad-series voltage source inverters', 27thAnnual IEEE Power Electronics Specialists Conf., PESC'96, 23–27 June 1996, p. 482–488.
    225. 225)
      • Josh, K., Behalf, A., Jain, A.K., Mohan, N.: `A comparative study of control strategies for fast voltage regulation with STATCOMs', 30thIEEE Annual Conf. Industrial Electronics Society, IECON, 2004, 1, p. 187–192.
    226. 226)
      • Leung, K.K., Sutanto, D.: `A new topology of a battery energy storage system', IEEE Proc. Energy Management and Power Deliv., Int. Conf., 3–5 March 1998, 1, p. 253–258.
    227. 227)
      • L.H. Walker . 10-MWGTO converter for battery peaking service. IEEE Trans. Ind. Appl. , 1 , 63 - 72
    228. 228)
      • Petitclair, P., Bacha, S., Rognon, J.P.: `Averaged modeling and nonlinear control of an ASVC (advanced static VAR compensator)', IEEE Power Electronics Specialists Conf., PESC '96 Record, 27th Annual Meeting, 1996, 1, p. 753–758.
    229. 229)
      • Draou, A., Benghanem, M., Tahri, A.: `Performance analysis of advanced static VAR compensator using three-level IGBT inverter', IEEE Proc. Industrial Electronics Society, 25th Annual Conf., IECON, 1999, 3, p. 1440–1444.
    230. 230)
    231. 231)
      • Yu, Q., Liu, W., Niu, N., Sun, Y., Teng, L., Zheng, D.: `Real-time supervision for ±50 MVAR cascade STATCOM', IEEE/PES Transmission and Distribution Conf. Exhibition, 2005, Asia and Pacific, p. 1–5.
    232. 232)
    233. 233)
    234. 234)
      • I. Papi . Mathematical analysis of FACTS devices based on a voltage source converter. Part II: Steady state operational characteristics. Electr. Power Syst. Res. , 2 , 149 - 157
    235. 235)
      • Fardanesh, B., Henderson, M.I., Adapa, R., Koessler, R.J.: `Feasibility studies for STATCON application in New York state', EPRI Flexible AC Transmission System (FACTS 3) Conf, 5–7 October 1994, Baltimore, MD.
    236. 236)
    237. 237)
      • Paice, D.A., Edwards, C.W.: `High voltage modular inverter and control system thereof', U.S., 4 674 024, 16 June 1987.
    238. 238)
      • G. Biajazczak . Space vector control of a unified compensator for nonactive power. IEE Proc. Power Appl. , 4 , 207 - 211
    239. 239)
    240. 240)
    241. 241)
      • Sharmeela, C., Uma, G., Mohan, M.R.: `Multi-level distribution STATCOM for voltage sag and swell reduction', IEEE PES GM, 2005, 2, p. 1303–1307.
    242. 242)
      • Qingguang, Y., Gangui, Y., Wenhua, L., Yingduo, H.: `Three-level AC–DC–AC VSI with IGCTs used in P&F', IEEE Proc. 4th World Congress, Intelligent Control and Automation, 2002, 3, p. 2516–2519.
    243. 243)
      • Mohan, N., Kamath, G.R.: `A novel, high-frequency, per-phase static VAR compensator', IEEE IAS ’95 Industry Applications Conf. Record, 30th Annual Meeting, 1995, 3, p. 2581–2586.
    244. 244)
      • Qingguang, Y., Pei, L., Wenhua, L., Xiaorong, X.: `Overview of STATCOM technologies', IEEE Int. Conf. Proc. Electric Utility Deregulation, Restructuring and Power Technologies, DRPT, 2004, 2, p. 647–652.
    245. 245)
      • C.A. Cañizares , M. Pozzi , S. Corsi , E. Uzunovic . STATCOM modeling for voltage and angle stability studies. Int. J. Electr. Power Energy Syst. , 6 , 431 - 441
    246. 246)
    247. 247)
      • D.N. Kosterev . Modelling synchronous voltage source converters in transmission planning studies. IEEE Trans. Power Deliv. , 2 , 947 - 952
    248. 248)
      • Wang, L., Tsai, Z.-Y.: `Dynamic stability enhancement of nuclear power plants of Taiwan power system using STATCON', IEEE Power Engineering Society WM 1999, 1, p. 604–609.
    249. 249)
      • Li, C., Wang, Z., Ma, X., Xiu, L.: `Physical experiments on a ±10 KVAR STATCOM model', IEEE Power Engineering Society WM, 1999, 2, p. 1184–1189.
    250. 250)
    251. 251)
      • H. Fujita , S. Tominaga , H. Akagi . A practical approach to switching loss reduction in a large capacity static VAR compensator based on voltage source inverters. IEEE Trans. Ind. Appl. , 5 , 1396 - 1404
    252. 252)
      • I. Papi . Mathematical analysis of FACTS devices based on a voltage source converter. Part 1: Mathematical models. Electr. Power Syst. Res. , 2 , 139 - 148
    253. 253)
    254. 254)
      • Singh, B., Saha, R.: `A harmonics optimized 12-pulse STATCOM for power system applications', IEEE Power India Conf., 2006, p. 7.
    255. 255)
      • A.M. Trzynadlowski . (1998) Introduction to modern power electronics.
    256. 256)
      • Padiyar, K.R., Kulkarni, A.M.: `Analysis and design of voltage control of static condenser', Proc. Int. Conf. Power Electronics, Drives and Energy Systems for Industrial Growth, 1996, p. 393–398.
    257. 257)
      • Reed, G., Paserba, J., Croasdaile, T.: `SDG&E Talega STATCOM project-system analysis, design, and configuration', IEEE/PES Transmission and Distribution Conf. Exhibition, 2002, Asia Pacific, 2, p. 1393–1398.
    258. 258)
      • M. Tavakoli Bina , D.C. Hamill . Average circuit model for angle-controlled STATCOM. IEE Proc. Electric Power Appl. , 3 , 653 - 659
    259. 259)
    260. 260)
      • Qingru, Q., Chang, Y., Wai, C.K., Yixin, N.: `Modeling and simulation of a STATCOM system based on 3-level NPC inverter using dynamic phasors', IEEE PES GM, 2004, 2, p. 1559–1564.
    261. 261)
    262. 262)
      • Sun, J., Czarkowski, D., Zabar, Z.: `Voltage flicker mitigation using PWM-based distribution STATCOM', IEEE PES, 21–25 July 2002, Chicago, SM.
    263. 263)
    264. 264)
      • J.E. Hills , W.T. Norris . Exact analysis of a multipulse shunt converter compensator or STATCOM. Part I: Performance. IEE Proc., Gener. Transm. Distrib. , 2 , 219 - 224
    265. 265)
      • Schauder, C.D.: `Advanced static VAR compensator control system', U.S., 5 329 221, 12 July 1994.
    266. 266)
      • A. Edris , R. Adapa , M.H. Baker . Proposed terms and definitions for flexible AC transmission system (FACTS). IEEE Trans. Power Deliv. , 4 , 1848 - 1853
    267. 267)
      • Schauder, C.D.: `DC Power regulator incorporating high power AC to DC converter with controllable DC voltage and method of use', U.S., 6 443 520, 13 August 2002.
    268. 268)
      • Mishral, M.K., Ghosh, A., Joshi, A.: `A new STATCOM topology to compensate loads containing AC and DC components', IEEE Power Engineering Society WM, 2000, 4, p. 2636–2641.
    269. 269)
      • Yao, Z., Kesimpar, P., Donescu, V., Uchevin, N., Rajagopalan, V.: `Nonlinear control for STATCOM based on differential algebra', IEEE Power Electronics Specialists Conf., PESC'98, Record, 29th Annual Meeting, 1998, 1, p. 329–334.
    270. 270)
      • Liu, W., Liang, X., Lin, F., Luo, C., Gao, H.: `Development of 20 MVA static synchronous compensator', IEEE PES WM, 2000, 4, p. 2648–2653.
    271. 271)
      • Draou, A., Benghanem, M., Tahri, A.: `Modelling and control of a static VAR compensator using an NPC inverter topology', 26thAnnual Conf. IEEE Industrial Electronics Society, IECON, 2000, 2, p. 1353–1357.
    272. 272)
      • Wang, H.F., Li, F.: `Design of STATCOM multivariable sampled regulator', Proc. Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies, DRPT, 2000, p. 1–6.
    273. 273)
    274. 274)
      • Steimer, P.K., Manjrekar, M.D.: `Practical medium voltage converter topologies for high power applications', IEEE SM/WM, 2001, p. 1723–1730.
    275. 275)
      • Lipman, K.: `Harmonic reduction for multi-bridge converters', U.S., 4 975 822, 4 December 1990.
    276. 276)
      • Haque, H.M.: `Stability improvement by FACTS devices: a comparison between STATCOM and SSSC', IEEE PES GM, 2005, 2, p. 1708–1713.
    277. 277)
      • T.J.E. Miller . (1982) Reactive power control in electric systems.
    278. 278)
      • Gyugyi, L.: `Converter-based FACTS controllers', Flexible AC Transmission Systems – The FACTS, IEE Colloquium, 23 November 1998, p. 1/1–1/11.
    279. 279)
      • Liang, Y., Nwankpa, C.O.: `A new type of STATCOM based on cascading voltage source inverters with phase-shifted unipolar SPWM', IEEE Industry Applications Conf., 33rd IAS Annual Meeting, 1998, 2, p. 1447–1453.
    280. 280)
      • Reed, G., Paserba, J., Croasdaile, T.: `The VELCO STATCOM-based transmission system project', Proc. IEEE/PES WM, 3, p. 1109–1114.
    281. 281)
    282. 282)
    283. 283)
      • Ichikaws, F., Suzuki, K., Nakajima, T., Irokawa, S., Kitahara, T.: `Development of self-commutated SVC for power system', IEEE Power Conversion Conf., 19–21 April 1993, Yokohama, p. 609–614.
    284. 284)
      • B.D. Bedford , R.G. Hoft . (1964) Principles of inverter circuits.
    285. 285)
      • Chatterjee, K., Fernandes, B.G., Dubey, G.K.: `A novel high power self-commutated static VAR compensator for load compensation', IEEE Proc. Power Electronics and Drive Systems, Int. Conf., 26–29 May 1997, p. 750–756.
    286. 286)
    287. 287)
      • Ni, Y., Snider, L.: `STATCOM power frequency model with VSC charging dynamics and its application in the power system stability analysis', 4thInt. Conf. Advances in Power System Control, Operation and Management, APSCOM-97 (Conf. Publ. No. 450), 1997, 1, p. 119–124.
    288. 288)
      • Bakhshai, A.R., Joos, G., Jain, P.: `A novel single pulse and PWM VAR compensator for high POWER application', IEEE Industry Applications Conf., 33rd IAS Annual Meeting, 12–15 October 1998, 2, p. 1385–1392.
    289. 289)
      • Sensarma, P.S., Padiyar, K.R., Ramanarayanan, V.: `A STATCOM for composite power line conditioning', IEEE Proc. Int. Conf. Industrial Technology, 2000, 1, p. 542–547.
    290. 290)
      • Chem, H., Nayar, V., Islam, S.: `Steady-state performance of a grid interactive voltage source inverter', Power Quality'98, p. 173–175.
    291. 291)
      • Draou, A., Benghanem, M.P., Tahri, A., Kotni, L.: `A model of solid state static VAR compensator', IEEE PES SM 2001, 15–19 July 2001, 1, p. 650–655.
    292. 292)
      • Lipman, K.: `Method for defining pulse width modulation (PWM) waveform patterns to produce inverter outputs having a low harmonic content', U.S., 5 224 028, June 1993.
    293. 293)
      • Gyugyi, L., Schauder, C.D.: `Generalized fast, power flow controller', U.S., 5 343 139, 30 August 1994.
    294. 294)
      • C. Schauder , H. Mehta . Vector analysis and control of advanced static VAR compensators. IEE Proc. Gener. Transm. Distrib. , 4 , 299 - 306
    295. 295)
      • Liu, X., Liu, W.-H., Jiang, Q.-R., Wang, Z.-H.: `Development of a voltage source inverter based static VAR generator', IEEE Energy Conversion Engineering Conf., IECEC Proc., 1996, 1, p. 611–616.
    296. 296)
      • Wuest, D., Stemmler, H., Scheuer, G.: `A comparison of different circuit configurations for an advanced static VAR compensator (ASVC)', IEEE Power Electronics Specialists Conf., 23rd Annual PESC'92, 29 June–3 July 1992, 1, p. 521–529.
    297. 297)
      • N. Mohan , T.M. Undeland , W.P. Robbins . (2002) Power electronics: converters applications and design.
    298. 298)
      • Pan, W., Zhang, J., Chen, H., Chang, Y., Wang, C.: `Novel configuration of 60-pulse voltage source converter', IEEE PES GM, 2007, p. 1–6.
    299. 299)
      • Peng, F.Z., Lai, J.-S.: `Multilevel cascade voltage source inverter with separate DC source', U.S., 5 642 275, 24 June 1997.
    300. 300)
      • Stacey, E.J.: `Simplified quasi-harmonic neutralized power inverters', U.S., 4 870 557, 26 September 1989.
    301. 301)
    302. 302)
      • Deshpande, N.R., Sasi, N., Sawant, R.R.: `Modeling of multilevel voltage source converter', 1stInt. Conf. Proc. Power Electronics Systems and Applications, 2004, p. 24–29.
    303. 303)
      • Mahdad, B., Bouktir, T., Srairi, K.: `Flexible methodology based in fuzzy logic rules for reactive power planning of multiple shunt FACTS devices to enhance system loadability', IEEE PES GM, 2007, p. 1–6.
    304. 304)
      • Schauder, C., Gernhardt, M., Stacey, E.: `±100 MVAR static condenser installation for TVA Sullivan substation', EPRI Flexible AC Transmission System (FACTS 3) Conf., 5–7 October 1994, Baltimore, MD.
    305. 305)
      • J.B. Ekanayake , N. Jenkins . A three-level advanced static VAR compensator. IEEE Trans. Power Deliv. , 2 , 655 - 661
    306. 306)
      • Mahapatra, K.K., Ghosh, A., Doradla, S.R.: `Simplified model for control design of STATCOM using three-level inverter', IEEE TENCON '98, Region 10 Int. Conf. Global Connectivity in Energy, Computer, Communication and Control, 1998, 2, p. 536–539.
    307. 307)
      • Wuest, D., Jenni, F.: `Space vector based current control schemes for voltage source inverters', IEEE Power Electronics Specialists Conf., PESC'93, 20–24 June 1993, p. 986–992.
    308. 308)
      • Chu, G.C., Choi, N.S., Rim, C.T., Cho, G.H.: `Modeling, analysis and control of static VAR compensator using three-level inverter', IEEE Industry Applications Society Annual Meeting, Conf. Record, 4–9 October 1992, p. 837–843.
    309. 309)
    310. 310)
    311. 311)
      • Han, B.-M., Baek, S.-T., Ko, J.-S.: `New configuration of 36-pulse voltage source converter for STATCOM application', 32ndIEEE Annual Conf. Industrial Electronics Society, IECON, 2005, p. 6.
    312. 312)
      • Hanson, D.J.: `A transmission SVC for national grid company PLC incorporating a ±75 MVAR STATCOM', IEE Colloquium Flexible AC Transmission Systems – The FACTS (Ref. No. 1998/500), p. 5/1–5/8.
    313. 313)
      • Xiaorong, X., Wenhua, L., Qianjing, L., Yingduo, H.: `The operation monitoring and fault diagnosis system for a ±20 MVAR STATCOM installation', Proc. Int. Conf. Power System Technology, POWERCON'98, 1998, 1, p. 86–90.
    314. 314)
      • Sen, K.K.: `Statcom – static synchronous compensator: theory, modeling, and applications', IEEE Power Engineering Society WM, 1999, 2, p. 1177–1183.
    315. 315)
    316. 316)
      • Qiang, W., Qi-Rong, J., Ying-Duo, H., Jian-Xin, X., Xiao-Feng, B.: `Advanced modeling and control package for power system problems', Proc. IEEE Int. Conf. Power Electronics and Drive Systems, PEDS ’99, 2, p. 696–701.
    317. 317)
    318. 318)
    319. 319)
      • Chen, Y., Ooi, B.-T.: `Advanced static VAR compensator using multi-modules of multilevel converters with equalization control of DC voltage levels', IEEE Power Electronics Specialists Conf., PESC'96, 27th Annual IEEE, 23–27 June 1996, 1, p. 747–752.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2008.0034
Loading

Related content

content/journals/10.1049/iet-pel.2008.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address