Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel

Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An expression for the bit error rate of a multiple subcarrier intensity-modulated atmospheric optical communication system employing spatial diversity is derived. Spatial diversity is used to mitigate scintillation caused by atmospheric turbulence, which is assumed to obey log-normal distribution. Optimal but complex maximum ratio, equal gain combining (EGC) and relatively simple selection combining spatial diversity techniques in a clear atmosphere are considered. Each subcarrier is modulated using binary phase shift keying. Laser irradiance is subsequently modulated by a subcarrier signal, and a direct detection PIN receiver is employed (i.e. intensity modulation/direction detection). At a subcarrier level, coherent demodulation is used to extract the transmitted data/information. The performance of on–off-keying is also presented and compared with the subcarrier intensity modulation under the same atmospheric conditions.

References

    1. 1)
      • M.K. Simon , M.S. Alouini . (2005) Digital communication over fading channels.
    2. 2)
      • J.T. Li , M. Uysal . Optical wireless communications: system model, capacity and coding. Vehicular Technol. Conf. , 168 - 172
    3. 3)
      • W.K. Pratt . (1969) Laser communication systems.
    4. 4)
      • T. Ohtsuki . Multiple-subcarrier modulation in optical wireless communications. IEEE Commun. Mag. , 74 - 79
    5. 5)
      • M. Uysal , J.T. Li , M. Yu . Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels. IEEE Trans. Wireless Commun. , 1229 - 1233
    6. 6)
      • G.R. Osche . (2002) Optical detection theory for laser applications.
    7. 7)
      • R.M. Gagliardi , S. Karp . (1988) Optical communications.
    8. 8)
      • I.B. Djordjevic , B. Vasic , M.A. Neifeld . LDPC coded OFDM over the atmospheric turbulence channel. Opt. Express , 6336 - 6350
    9. 9)
      • Kamalakis, T., Sphicopoulos, T., Sheikh Muhammad, S., Leitgeb, E.: `Estimation of power scintillation statistics in free space optical links using the multi canonical Monte Carlo method', IEEE Int. symp. on communication systems, networks and digital signal processing (CSNDSP, 2006), July 2006, Patras, Greece, p. 629–633.
    10. 10)
      • J.W. Goodman . (1984) Statistical Optics.
    11. 11)
      • H. Willebrand , B.S. Ghuman . (2002) Free space optics: enabling optical connectivity in today's network.
    12. 12)
      • S. Teramoto , T. Ohtsuki . Multiple-subcarier optical communication systems with subcarrier signal-point sequence. IEEE Trans. Commun. , 1738 - 1743
    13. 13)
      • X. Lu , J.M. Kahn . Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. , 1293 - 1300
    14. 14)
      • S. Bloom , E. Korevaar , J. Schuster , H. Willebrand . Understanding the performance of free-space optics. J. Opt. Netw. , 178 - 200
    15. 15)
      • Yuksel, H.: `Studies of the effects of atmospheric turbulence on free space optical communications in Electrical and Computer Engineering', 2005, PhD, University of Maryland, College ParkUSA.
    16. 16)
      • Korevaar, E., Kim, I.I., McArthur, B.: `Atmospheric propagation characteristics of highest importance to commercial free space optics', , MRV Communications white paper: available at http://www.mrv.com/library/library.php?view=wp. Accessed July 2007.
    17. 17)
      • D. Kedar , S. Arnon . Optical wireless communication through fog in the presence of pointing errors. Appl. Opt. , 4946 - 4954
    18. 18)
      • M. Abramowitz , I.S. Stegun . (1977) Handbook of mathematical functions with formulars, graphs and mathematical tables.
    19. 19)
      • I.B. Djordjevic , B. Vasic . 100-Gb/s transmission using orthogonal frequency -division multiplexing. IEEE Photonics technol. lett. , 1576 - 1578
    20. 20)
      • J.G. Proakis . (1995) Digital communications.
    21. 21)
      • R. You , J.M. Kahn . Average power reduction techniques for multi-subcarrier intensity-modulated optical signals. IEEE Trans. commun. , 2164 - 2171
    22. 22)
      • E.J. Lee , V.W.S. Chan . Optical communications over the clear turbulent channel using diversity. IEEE J. Select. Areas Commun. , 1896 - 1906
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt_20070030
Loading

Related content

content/journals/10.1049/iet-opt_20070030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address