Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free High availability cooperative free space optical communication link with various diversity combining methods

The authors investigate the performance and reliability improvement of multiple relay cooperative free space optical (FSO) communication over direct link. Multiple gain combiner (MGC) method has been introduced as a diversity combining method which assures to provide a close to optimum performance as compared to maximal ratio combining (MRC). As compared to MRC, the proposed MGC technique does not require prior channel information and adaptive gain adjustment. Bit error rate (BER) performance improvement with different combining techniques, including MGC, in cooperative FSO system for different channel environments has been included in this study. BER performance for multiple relays for various combining techniques: selection combining, equal gain combining, MRC and MGC have been compared and it is seen that the performance of MGC is close to optimum MRC. High availability of the system is achieved by using multiple relays in the cooperative system. Markov model analysis for availability and mean time between failures of FSO systems in multiple relays cooperative communication has been done to verify the reliability improvement of a cooperative system with increasing number of relays.

References

    1. 1)
      • 21. Sandalidis, H.G., Tsiftsis, T.A., Karagiannidis, G.K.: ‘Optical wireless communication with heterodyne detection over turbulence channels with pointing errors’, J. Lightw. Technol., 2009, 27, (20), pp. 44404445.
    2. 2)
      • 22. Chandra, V., Kumar, K.V.: ‘Reliability and safety analysis of fault tolerant node for use in a railway signaling system’, Reliab. Eng. Syst. Saf., 1997, 57, (2), pp. 177183.
    3. 3)
      • 8. Karimi, M., Nasiri-Kenari, M.: ‘BER analysis of cooperative systems in free-space optical networks’, J. Lighw. Technol., 2009, 27, (24), pp. 56395647.
    4. 4)
      • 10. Chatzidiamantis, N.D., Michalopoulosy, D.S., Kriezis, E.E., et al: ‘Relay selection protocols for relay-assisted free space optical systems’, J. Opt. Commun. Netw., 2013, 5, (1), pp. 92103.
    5. 5)
      • 6. Abou-Rjeily, C., Slim, A.: ‘Cooperative diversity for free-space optical communications: transceiver design and performance analysis’, IEEE Trans. Commun., 2011, 59, (3), pp. 658663.
    6. 6)
      • 1. www.lightpointe.com, accessed 27 August 2017.
    7. 7)
      • 5. Abou-Rjeily, C., Haddad, S.: ‘Cooperative FSO systems: ‘performance analysis and optimal power allocation’, J. Lightw. Technol., 2011, 29, (7), pp. 10581065.
    8. 8)
      • 16. Dubey, V., Chadha, D., Chandra, V., et al: ‘Bit error rate and reliability analysis of cooperative communication in free space optical systems’, Photonics Netw. Commun., 2014, 28, (1), pp. 92101.
    9. 9)
      • 19. Skolnik, M.L.: ‘Introduction to radar systems’ (McGraw-Hill, New York, 1980, 2nd edn.).
    10. 10)
      • 2. Heatley, D.J.T., Wisely, D.R., Neild, I., et al: ‘Optical wireless: the story so far’, IEEE Commun. Mag., 1998, 36, (12), pp. 7282.
    11. 11)
      • 15. Winzer, P.J.: ‘High-spectral-efficiency optical modulation formats’, J. Lightw. Technol., 2012, 30, (24), pp. 38243835.
    12. 12)
      • 24. Baskaranet, E., Llorca, E.J., Milner, S.D., et al: ‘Proc. 6709, Free-Space Laser Communications VII’, 67090H, 2007.
    13. 13)
      • 4. Bansal, A., Bhatnagar, M.R., Hjørungnes, A., et al: ‘Low complexity decoding in DF MIMO relaying system’, IEEE Trans. Veh. Technol., 2013, 62, (3), pp. 11231137.
    14. 14)
      • 11. Kashani, M.A., Safari, M., Uysal, M., et al: ‘Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems’, J. Opt. Commun. Netw., 2013, 5, (1), pp. 3747.
    15. 15)
      • 12. Abou-Rjeily, C.: ‘Achievable diversity orders of decode-and-forward cooperative protocols over gamma-gamma fading FSO links’, IEEE Trans. Commun., 2013, 61, (9), pp. 39193930.
    16. 16)
      • 3. Laneman, J.N., Wornell, G.W.: ‘Energy-efficient antenna sharing and relaying for wireless networks’. Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Chicago, IL, September 2000, pp. 712.
    17. 17)
      • 17. Simon, M.K., Alouini, M.S.: ‘Digital communication over fading channels: a unified approach to performance analysis’ (John Wiley & Sons, Hoboken, NJ, 2000).
    18. 18)
      • 9. Karimi, M., Nasiri-Kenari, M.: ‘Outage analysis of relay-assisted free-space optical communications’, IET Commun., 2010, 4, (12), pp. 14231432.
    19. 19)
      • 18. Popoola, W.O., Ghassemlooy, Z., Allen, J.I.H., et al: ‘Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel’, IET Optoelectron., 2008, 2, (1), pp. 1630.
    20. 20)
      • 7. Fan, J., Zhou, X., Liu, J., et al: ‘Design and evaluation of an IDMA cooperative relay free-space optical system’. Proc. Int. Conf. Space Optical Systems and Applications, Santa Monica, CA, USA, May 2011, pp. 358362.
    21. 21)
      • 20. Zhu, X., Kahn, J.M.: ‘Free-space optical communication through atmospheric turbulence channels’, IEEE Trans. Commun., 2002, 50, (8), pp. 12931300.
    22. 22)
      • 13. Abou-Rjeily, C.: ‘Performance analysis of selective relaying in cooperative free-space optical systems’, J. Lightw. Technol., 2013, 31, (18), pp. 29652973.
    23. 23)
      • 23. Vishwanadham, N., Sharma, V.V.S., Singh, M.G.: ‘Reliability of computer and control systems’ (Elsevier Science, New York, 1987).
    24. 24)
      • 14. Kumar, K., Borah, D.K.: ‘Quantize and encode relaying through FSO and hybrid FSO/RF links’, IEEE Trans. Veh. Technol., 2015, 64, (6), pp. 23672374.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0123
Loading

Related content

content/journals/10.1049/iet-opt.2017.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address