Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Investigation of an optically induced superstrate plasma for tuning microstrip antennas

Optically induced electron–hole plasmas in silicon are used to perform radiation pattern tuning. The antenna is a slot loaded microstrip patch and the effect of illumination is shown to produce beam switching in the radiation patterns of certain modes while other modes are left unaffected. The structure is specifically designed to make the best use of currently available miniature laser sources to form a compact tunable package. Modelled and measured results for tuning of the radiation patterns and frequency response are presented. The effect of the losses incurred by the plasma along with the losses in the optically transparent ground plane are quantified in both simulation and measurement. This forms the basis for designing other types of optically tunable miniature antennas based on the structure presented.

References

    1. 1)
      • 6. Lee, C., Mak, P., DeFonzo, A.: ‘Optical control of millimeter-wave propagation in dielectric waveguides’, IEEE Quantum Electron., 1980, 16, (03), pp. 277288.
    2. 2)
      • 18. Carver, K., Mink, J.: ‘Microstrip antenna technology’, IEEE Trans. Antennas Propag., 1981, 29, (1), pp. 224.
    3. 3)
      • 9. Liu, D., Charette, D., Bergeron, M., et al: ‘Structurally embedded photoconductive silicon bowtie antenna’, IEEE Photonics Technol. Lett., 1998, 10, (5), pp. 716718.
    4. 4)
      • 14. Dissanayake, T., Esselle, K.: ‘Prediction of the notch frequency of slot loaded printed UWB antennas’, IEEE Antennas Propag., 2007, 55, (11), pp. 33203325.
    5. 5)
      • 16. Lee, J., Horng, T., Alexopoulos, N.: ‘Analysis of cavity-backed aperture antennas with a dielectric overlay’, Antennas Propag., 1994, 42, (11), pp. 15561562.
    6. 6)
      • 20. Gamlath, C.D., Benton, D.M., Cryan, M.J.: ‘Microwave properties of an inhomogeneous optically illuminated plasma in a microstrip gap’, IEEE Microw. Theory Tech., 2015, 63, (2), pp. 374383.
    7. 7)
      • 17. Jackson, D., Alexopoulos, N.: ‘Gain enhancement methods for printed circuit antennas’, IEEE Trans. Antennas Propag., 1985, 33, (9), pp. 976987.
    8. 8)
      • 13. Guo, Y.X., Luk, K.F.L.: ‘Dual band slot loaded short circuited patch antenna’, Electron. Lett., 2004, 36, (4), pp. 289291.
    9. 9)
      • 4. Kowalczuk, E.K., Panagamuwa, C.J., Seager, R.D., et al: ‘Characterising the linearity of an optically controlled photoconductive microwave switch’. Loughborough Antennas and Propagation Conf., November 2010, pp. 597600.
    10. 10)
      • 3. Butler, J.K., Tran-Fu, W., Scott, M.W.: ‘Nonuniform layer model of a millimeter-wave phase shifter’, IEEE Trans. Microw. Theory Tech., 1986, 34, (1), pp. 147155.
    11. 11)
      • 15. Maci, S., Gentili, G.B.: ‘Dual-band slot-loaded patch antenna’, IEEE Antennas Propagation, 1995, 142, (3), pp. 225232.
    12. 12)
      • 7. Dawson, M.D., Neil, M.A.A.: ‘Micro-pixellated LEDs for science and instrumentation’, J. Appl. Phys., 2008, 41, (9), pp. 12.
    13. 13)
      • 2. Lucyszyn, S. (Ed.): ‘Advanced RF MEMS’ (Cambridge University Press, 2010).
    14. 14)
      • 8. Edwards, R.N., Nunnally, W.C., Dickson, W.D., et al: ‘Investigation of photoconductive silicon as a reconfigurable antenna’. North American Conf. Smart Structures and Materials, January 1993, pp. 344353.
    15. 15)
      • 1. Christodoulou, C.G., Tawk, Y., Lane, S.A., et al: ‘Reconfigurable antennas for wireless and space applications’, Proc. IEEE, 2012, 100, (7), pp. 22502261.
    16. 16)
      • 21. Kerr, A.R.: ‘Surface impedance of superconductors and normal conductors in EM simulators’. MMA Memo 21 May 1999.
    17. 17)
      • 12. Panagamuwa, C.J., Chauraya, A., Vardaxoglou, J.C.: ‘Frequency and beam reconfigurable antenna using photoconducting switches’, IEEE Trans. Antennas Propag., 2006, 54, (2), pp. 449454.
    18. 18)
      • 19. Adams, A.: ‘Flush mounted rectangular cavity slot antennas – theory and design’, IEEE Trans. Antennas Propag., 1967, 15, (3), pp. 342351.
    19. 19)
      • 5. Auston, D.H., Cheung, K.P., Smith, P.R.: ‘Picosecond photoconducting Hertzian dipoles’, Appl. Phys. Lett., 1984, 45, (3), p. 284.
    20. 20)
      • 10. Gamlath, C.D., Collett, M.A., Cryan, M.J.: ‘Investigation of novel architectures for tunable antennas based on optically generated plasmas’. 45th European Microwave Conf., Paris, September 2015.
    21. 21)
      • 22. Collin, R.: ‘Foundations for microwave engineering’ (McGraw–Hill, 2001).
    22. 22)
      • 11. Tawk, Y., Albrecht, A.R., Hemmady, S., et al: ‘Optically pumped frequency reconfigurable antenna design’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 280283.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0133
Loading

Related content

content/journals/10.1049/iet-opt.2016.0133
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address