Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimised THz photoconductive devices based on low-temperature grown III–V compound semiconductors incorporating distributed Bragg reflectors

This study reports work on optimised THz photoconductive antenna switches based on low-temperature grown materials incorporating distributed Bragg reflectors (DBRs). These materials were characterised electrically using Hall effect, mid-infrared reflectivity measurements and fabricated antennas tested under pulsed excitation in a time-domain spectroscopy system. It is shown that the inclusion of DBR results in enhanced THz peak signals by more than twice across the entire operating frequency range. In addition, the devices exhibit significant improvements in the relative THz power, responsivity and optical to electrical efficiency compared with the reference ones.

References

    1. 1)
      • 3. Carpintero, G., Garcia-Munoz, E., Hartnagel, H., et al: ‘Semiconductor teraHertz technology: devices and systems at room temperature operation’ (John Wiley & Sons, 2015).
    2. 2)
      • 24. Mikulics, M., Marso, M., Wu, S., et al: ‘Sensitivity enhancement of metal–semiconductor–metal photodetectors on low-temperature-grown GaAs using alloyed contacts’, IEEE Photonics Technol. Lett., 2008, 20, pp. 10541056.
    3. 3)
      • 11. Sartorius, B., Roehle, H., KŘnzel, H., et al: ‘All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths’, Opt. Exp., 2008, 16, pp. 95659570.
    4. 4)
      • 15. Kostakis, I., Saeedkia, D., Missous, M.: ‘Terahertz generation and detection using low temperature grown InGaAs–InAlAs photoconductive antennas at 1.55 pulse excitation’, IEEE Trans. Terahertz Sci. Technol., 2012, 2, pp. 617622.
    5. 5)
      • 17. Kostakis, I., Saeedkia, D., Missous, M.: ‘Efficient terahertz devices based on III–V semiconductor photoconductors’, IET Optoelectron., 2014, 8, pp. 3339.
    6. 6)
      • 6. Luysberg, M., Sohn, H., Prasad, A., et al: ‘Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs’, J. Appl. Phys., 1998, 83, pp. 561566.
    7. 7)
      • 16. Taylor, Z., Brown, E., Bjarnason, J., et al: ‘Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power’, Opt. Lett., 2006, 31, pp. 17291731.
    8. 8)
      • 19. Kostakis, I., Missous, M.: ‘Optimization and temperature dependence characteristics of low temperature In0.3Ga0.7As and In0.53Ga0.47As–In0.52Al0.48As semiconductor terahertz photoconductors’, AIP Adv., 2013, 3, p. 092131.
    9. 9)
      • 20. Gregory, I.S., Baker, C., Tribe, W., et al: ‘High resistivity annealed low-temperature GaAs with 100 fs lifetimes’, Appl. Phys. Lett., 2003, 83, pp. 41994201.
    10. 10)
      • 22. Mayorga, I.C., Mikulics, M., Schmitz, A., et al: ‘An optimization of terahertz local oscillators based on LT-GaAs technology’. SPIE Millimeter and Submillimeter Detectors for Astronomy II, 2004, pp. 537547.
    11. 11)
      • 23. Vieweg, N., Mikulics, M., Scheller, M., et al: ‘Impact of the contact metallization on the performance of photoconductive THz antennas’, Opt. Express, 2008, 16, pp. 1969519705.
    12. 12)
      • 13. Wilk, R., Mikulics, M., Biermann, K., et al: ‘THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser’. Conf. on Lasers and Electro-Optics, 2007.
    13. 13)
      • 5. Kordos, P., Ruders, F., Marso, M., Forster, A., et al: ‘Properties of LT MBE GaAs for photomixing up to THz frequencies’. Proc. Int. Conf. Optoelectronic and Microelectronic Materials and Devices Proceedings, Canberra, Australia, December 1996, pp. 7174.
    14. 14)
      • 1. Brown, E.: ‘THz generation by photomixing in ultrafast photoconductors’, Int. J. High Speed Electron. Syst., 2003, 13, pp. 497545.
    15. 15)
      • 14. Sartorius, B., Künzel, H., Biermann, K., et al: ‘THz Photoconductive Antennas for 1.55 µm Telecom Wavelengths’, Opt. Terahertz Sci. Technol., OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME6.
    16. 16)
      • 4. Saeedkia, D., Safavi-Naeini, S.: ‘A comprehensive model for photomixing in ultrafast photoconductors’, IEEE Photonics Technol. Lett., 2006, 18, pp. 14571459.
    17. 17)
      • 18. Missous, M., Kostakis, I., Saeedkia, D.: ‘Long wavelength low temperature grown GaAs and InP-based terahertz photoconductors devices’, IEEE Sens. J., 2013, 13, pp. 6371.
    18. 18)
      • 10. Biermann, K., Nickel, D., Reimann, K., et al: ‘Ultrafast optical nonlinearity of low-temperature-grown GaInAs/AlInAs quantum wells at wavelengths around 1.55 μm’, Appl. Phys. Lett., 2002, 80, pp. 19361938.
    19. 19)
      • 8. Martin, G., Farges, J., Jacob, G., et al: ‘Compensation mechanisms in GaAs’, J. Appl. Phys., 1980, 51, pp. 28402852.
    20. 20)
      • 7. Martin, G.: ‘Optical assessment of the main electron trap in bulk semi-insulating GaAs’, Appl. Phys. Lett., 1981, 39, pp. 747748.
    21. 21)
      • 12. Vieweg, N., Rettich, F., Deninger, A., et al: ‘Terahertz-time domain spectrometer with 90 dB peak dynamic range’, J. Infrared Millim. Terahertz Waves, 2014, 35, pp. 823832.
    22. 22)
      • 9. Takahashi, R., Kawamura, Y., Iwamura, H.: ‘Ultrafast 1.55 μm all-optical switching using low-temperature-grown multiple quantum wells’, Appl. Phys. Lett., 1996, 68, pp. 153155.
    23. 23)
      • 21. Saeedkia, D.: ‘Resonantly enhanced terahertz power spectrum in terahertz photoconductive antennas’. 34th Int. Conf. on Infrared, Millimeter, and Terahertz Waves, 2009.
    24. 24)
      • 2. Saeedkia, D.: ‘Handbook of terahertz technology for imaging, sensing and communications’ (Elsevier, 2013).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0055
Loading

Related content

content/journals/10.1049/iet-opt.2016.0055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address