http://iet.metastore.ingenta.com
1887

Terahertz frequency generation with monolithically integrated dual wavelength distributed Bragg reflector semiconductor laser diode

Terahertz frequency generation with monolithically integrated dual wavelength distributed Bragg reflector semiconductor laser diode

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Optoelectronic terahertz (THz) generation techniques have helped to narrow the THz gap and have opened up a wealth of new applications for THz technology. However, the development of THz systems into mass market is a major technical challenge, which is attributed to high cost of THz hardware components including sources and detectors. Here, the authors report THz generation from a distributed Bragg reflector (DBR) semiconductor laser diode together with fibre coupled photoconducting antennas. Two fibre coupled ion-implanted gallium arsenide photoconducting antennas were employed to generate and detect THz radiation. Two DBR lasers connected with a Y-shaped waveguide structure were monolithically integrated and used to simultaneously emit two wavelengths in the range of 785 nm. These lasers were employed as pumping source for the photomixers. An optical beat frequency of 286 GHz of the dual wavelengths was obtained from optical characterisation. A corresponding THz frequency was confirmed via photomixing in a homodyne set up. By variation of the operation parameters of the laser, the difference frequency was tuned in the range between 286 GHz to 320 GHz. In summary, they report the implementation of a compact and cost effective fiber coupled Terahertz source based on a monolithically integrated dual wavelength DBR semiconductor laser diode.

References

    1. 1)
      • S. Hoffmann , M. Hofmann , M. Kira .
        1. Hoffmann, S., Hofmann, M., Kira, M., et al: ‘Two-color diode lasers for generation of THz radiation’, Semicon. Sci. Technol., 2005, 20, p. S205.
        . Semicon. Sci. Technol. , S205
    2. 2)
      • C. Brenner , S. Hoffmann , C.-S. Friedrich .
        2. Brenner, C., Hoffmann, S., Friedrich, C.-S., et al: ‘Semiconductor laser based THz generation and detection’, Phys. Stat. Sol., 2009, C6, p. 564.
        . Phys. Stat. Sol. , 564
    3. 3)
      • K.A. McIntosh , E.R. Brown , K.B. Nichols .
        3. McIntosh, K.A., Brown, E.R., Nichols, K.B., et al: ‘Terahertz photomixing with diode lasers in low-temperature-grown GaAs’, Appl. Phys. Lett., 1995, 67, p. 3844.
        . Appl. Phys. Lett. , 3844
    4. 4)
      • N. Kim , S. Han , H. Ko .
        4. Kim, N., Han, S., Ko, H., et al: ‘Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer’, Opt. Express, 2011, 19, (16), p. 15399.
        . Opt. Express , 16 , 15399
    5. 5)
      • I. Park .
        5. Park, I.: ‘Investigations of the generation of tunable continuous-wave terahertz radiation and its spectroscopic applications’, Darmstadt, 2007.
        .
    6. 6)
      • M. Tani , P. Gu , M. Hyodo .
        6. Tani, M., Gu, P., Hyodo, M., et al: ‘Generation of coherent terahertz radiation by photomixing of dual-mode lasers’, Opt. Quantum Electron., 2000, 32, pp. 503520.
        . Opt. Quantum Electron. , 503 - 520
    7. 7)
      • S. Hoffmann , M. Hofmann .
        7. Hoffmann, S., Hofmann, M.: ‘Generation of terahertz with two-color semiconductor lasers’, Laser Photonics Rev., 2007, 1, pp. 4456.
        . Laser Photonics Rev. , 44 - 56
    8. 8)
      • M. Tani , O. Morikawa , S. Matsuura .
        8. Tani, M., Morikawa, O., Matsuura, S., et al: ‘Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers’, Semicond. Sci. Technol., 2005, 20, (7), pp. S151S163, doi: 10.1088/0268-1242/20/7/005.
        . Semicond. Sci. Technol. , 7 , S151 - S163
    9. 9)
      • M. Uemukai , T. Suhara .
        9. Uemukai, M., Suhara, T.: ‘Integrated two-wavelength DBR lasers for tunable photomixing THz-wave generation’. European Conf. of Integrated Optics, Barcelona, Spain, 18–20 April 2012.
        . European Conf. of Integrated Optics
    10. 10)
      • P. Gu , M. Tani , I. Sakai .
        10. Gu, P., Tani, M., Sakai, I., et al: ‘Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode’, Jpn. J. Appl. Phys., 1998, 37, pp. 553560.
        . Jpn. J. Appl. Phys. , 553 - 560
    11. 11)
      • R.K. Price , V.B. Verma , K.E. Tobin .
        11. Price, R.K., Verma, V.B., Tobin, K.E., et al: ‘Y-branch surface-etched distributed Bragg reflector lasers at 850 nm for optical heterodyning’, IEEE Photonics Technol. Lett., 2007, 19, (20), pp. 16101612.
        . IEEE Photonics Technol. Lett. , 20 , 1610 - 1612
    12. 12)
      • M. Sun , S. Tan , S. Liu .
        12. Sun, M., Tan, S., Liu, S., et al: ‘Monolithically integrated two-wavelength distributed Bragg reflector laser for terahertz generation’, Stu3G.4, OSA 2016.
        .
    13. 13)
      • B. Sumpf , M. Maiwald , A. Müller .
        13. Sumpf, B., Maiwald, M., Müller, A., et al: ‘Comparison of two concepts for dual wavelength DBR ridge waveguide diode lasers at 785 nm suitable for shifted excitation Raman difference spectroscopy’, Appl. Phys. B, 2015, 120, (2), pp. 261269.
        . Appl. Phys. B , 2 , 261 - 269
    14. 14)
      • I.C. Mayorga , E.A. Michael , A. Schmitz .
        14. Mayorga, I.C., Michael, E.A., Schmitz, A., et al: ‘Terahertz photomixing in high energy oxygen- and nitrogen-ion-implanted GaAs’, Appl. Phys. Lett., 2007, 91, (031107), pp. 11071109.
        . Appl. Phys. Lett. , 31107 , 1107 - 1109
    15. 15)
      • 15. ‘Monolithic DBR lasers offer deterministic wavelength tunability’, http://www.photodigm.com/literature/applications-notes/wavelength-tuning-in-dbr-lasers/, accessed 2 May 2016.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0054
Loading

Related content

content/journals/10.1049/iet-opt.2016.0054
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address