Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Survey on optical camera communications: challenges and opportunities

Wireless technologies based on radio frequencies (RFs) have always dominated other types of wireless technologies up until now. However, the recent proliferation of media-rich smart devices has pushed the RF spectrum usage to its limit. Therefore RF band expansion towards the optical spectrum is imminent in commercial scale. Indeed, the research on wireless communications using the optical spectrum has gained tremendous ground during the past couple of decades and standardised, respectively, by infrared data association for infrared communication and IEEE 802.15.7 for visible light communication. However, only few shortcomings of the IEEE 802.15.7 standard have led to the development of a revised version, called IEEE 802.15.7r1. This article provides an insight on the activity of the proposed revision of IEEE 802.15.7r1. The proposed revision version targets communication systems that mainly use either image sensors or cameras, known as the optical camera communications (OCC). Leveraging the existing infrastructure, OCC systems will be able to provide ubiquitous coverage in both indoors and outdoors. The authors present their survey focusing on the key technology consideration in IEEE 802.15.7r1, current research status, impairments, enhancements and futuristic application scenarios of the OCC systems.

References

    1. 1)
      • 6. Infrared data association’, http://www.irda.org/, http://www.irda.org/.
    2. 2)
      • 45. Ifthekhar, M.S., Saha, N., Jang, Y.M.: ‘Neural network based indoor positioning technique in optical camera communication system’. Int. Conf. Indoor Positioning and Indoor Navigation, 2014, pp. 15.
    3. 3)
      • 44. Gaschler, A., Burschka, D., Hager, G.: ‘Epipolar-based stereo tracking without explicit 3D reconstruction’. Int. Conf. Pattern Recognition (ICPR), 2010, pp. 17551758.
    4. 4)
      • 17. Kuo, Y.-S., Pannuto, P., Hsiao, K.-J., Dutta, P.: ‘Luxapose: indoor positioning with mobile phones and visible light’. Proc. Annual Int. Conf. Mobile Computing and Networking, 2014, pp. 711.
    5. 5)
    6. 6)
    7. 7)
      • 46. Hsia, K.H., Lien, S.F., Wang, C.C., Su, J.P.: ‘Camera position estimation from image by ANFIS’. Int. Conf. Innovative Computing, Information Control, 2009, pp. 548551.
    8. 8)
      • 27. Ashok, A., Gruteser, M., Mandayam, N., Dana, K.: ‘Characterizing multiplexing and diversity in visual MIMO’. Int. Conf. Information Science and Systems, 2011, pp. 16.
    9. 9)
      • 48. Lin, X., Ikawa, K., Hiroshashi, K.: ‘High-speed full-duplex multiaccess system for LED based wireless communications using visible light’. Proc. Int. Symp. Opt. Eng. Photon. Technol., 2009, pp. 15.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 16. Rajagopal, N., Lazik, P., Rowe, A.: ‘Hybrid visible light communication for cameras and low-power embedded devices’. Proc. ACM MobiCom Workshop Visible Light Communication Systems, 2014, pp. 3338.
    14. 14)
      • 57. GE brings ByteLight-enabled smart LED lights to stores’, http://www.spectrum.ieee.org/tech-talk/consumer-electronics/gadgets/ge-brings-bytelightenabled-smart-lighting-to-stores, accessed November 2014.
    15. 15)
      • 19. Lee, H.-Y.: ‘Unsynchronized visible light Communications using rolling shutter camera: implementation and evaluation’. M.S. thesis, Dept. of Comput. Sci. and Inform. Eng., College of Elect. Eng. and Comput. Sci., Nat. Taiwan University, 2014, pp. 155.
    16. 16)
      • 14. Kuraki, K., Nakagata, S., Tanaka, R., Anan, T.: ‘Data transfer technology to enable communication between displays and smart devices’, FUJITSU Sci. Tech. J., 2014, 50, (1), pp. 4045.
    17. 17)
    18. 18)
      • 15. Roberts, R.D.: ‘Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom)’. Wirel. and Optical Commun. Conf., 2013, pp. 645648.
    19. 19)
    20. 20)
      • 25. Saha, N., Jang, Y.M.: ‘Analysis of imaging diversity for MIMO visible light communication’. Int. Conf. Ubiquitous and Future Network, 2014, pp. 2934.
    21. 21)
      • 58. Sterling, G., Top, D.: ‘Mapping the indoor marketing opportunity’. Opus Indoor Report, 2014.
    22. 22)
    23. 23)
    24. 24)
      • 10. Danakis, C., Afgani, M., Povey, G., Underwood, I., Haas, H.: ‘Using a CMOS camera sensor for visible light communication’. IEEE Globecom Workshops, 2012, pp. 12441248.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 34. Roberts, R.: ‘The CamCom LLC dilema’. IEEE 802.15 IG7a standardization documents, 2013.
    31. 31)
    32. 32)
    33. 33)
      • 18. Hu, W., Gu, H., Pu, Q.: ‘LightSync: unsynchronized visual communication over screen-camera links’. In Proc. MobiCom, 2013, pp. 1526.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 55. Auluck, V., Roberts, R., Horisaki, K.: ‘Some CamCom applications’. IEEE 802.15 SG7a standardization documents, 2014.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
      • 59. ByteLight illuminates the mobile wallet using LED lights’, https://www.gigaom.com/2013/07/31/bytelight-illuminates-the-mobile-wallet-using-led-lights/, accessed November 2014.
    42. 42)
      • 38. Zhang, W., Chowdhury, M., Kavehrad, M.: ‘Asynchronous indoor positioning system based on visible light communications’, Opt. Eng., 2014, 53, (4), pp. 45105(1)45105(9).
    43. 43)
      • 2. Bell, A.-G.: ‘Apparatus for signaling and communicating, called photophone’. US Patent 235199, 1880.
    44. 44)
    45. 45)
      • 40. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University Press, 2004).
    46. 46)
      • 13. Iizuka, N.: ‘OCC proposal of scope of standardization and applications’. IEEE 802.15 SG7a standardization documents, 2014.
    47. 47)
      • 8. IEEE Standard for Local and Metropolitan Area Networks, Part 15.7: ‘Short-range wireless Optical communication using visible light’, 2011.
    48. 48)
      • 21. Nguyen, T., Le, N.T., Jang, Y.M.: ‘Asynchronous scheme for unidirectional optical camera communications (OCC)’. Int. Conf. Ubiquitous and Future Network, 2014, pp. 4851.
    49. 49)
      • 56. Augmented reality using VLC’, http://www.visiblelightcomm.com/augmented-reality-using-vlc/, accessed November 2014.
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
      • 9. Heile, R.: ‘Short-range wireless optical communication’. Revision to IEEE Standard 802.15.7-2011, 2014.
    57. 57)
    58. 58)
    59. 59)
      • 47. Omura, Y., Funabiki, S., Tanaka, T.: ‘A monocular vision-based position sensor using neural networks for automated vehicle following’. Proc. IEEE Int. Conf. Power Electron. Drive Syst., 1999, pp. 388393.
    60. 60)
      • 43. Yoshino, M., Haruyama, S., Nakagawa, M.: ‘High-accuracy positioning system using visible LED lights and image sensor’. IEEE Radio and Wireless Symp., 2008, pp. 439442.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2014.0151
Loading

Related content

content/journals/10.1049/iet-opt.2014.0151
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address