http://iet.metastore.ingenta.com
1887

Survey on optical camera communications: challenges and opportunities

Survey on optical camera communications: challenges and opportunities

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wireless technologies based on radio frequencies (RFs) have always dominated other types of wireless technologies up until now. However, the recent proliferation of media-rich smart devices has pushed the RF spectrum usage to its limit. Therefore RF band expansion towards the optical spectrum is imminent in commercial scale. Indeed, the research on wireless communications using the optical spectrum has gained tremendous ground during the past couple of decades and standardised, respectively, by infrared data association for infrared communication and IEEE 802.15.7 for visible light communication. However, only few shortcomings of the IEEE 802.15.7 standard have led to the development of a revised version, called IEEE 802.15.7r1. This article provides an insight on the activity of the proposed revision of IEEE 802.15.7r1. The proposed revision version targets communication systems that mainly use either image sensors or cameras, known as the optical camera communications (OCC). Leveraging the existing infrastructure, OCC systems will be able to provide ubiquitous coverage in both indoors and outdoors. The authors present their survey focusing on the key technology consideration in IEEE 802.15.7r1, current research status, impairments, enhancements and futuristic application scenarios of the OCC systems.

References

    1. 1)
    2. 2)
      • 2. Bell, A.-G.: ‘Apparatus for signaling and communicating, called photophone’. US Patent 235199, 1880.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 6. Infrared data association’, http://www.irda.org/, http://www.irda.org/.
    7. 7)
    8. 8)
      • 8. IEEE Standard for Local and Metropolitan Area Networks, Part 15.7: ‘Short-range wireless Optical communication using visible light’, 2011.
    9. 9)
      • 9. Heile, R.: ‘Short-range wireless optical communication’. Revision to IEEE Standard 802.15.7-2011, 2014.
    10. 10)
      • 10. Danakis, C., Afgani, M., Povey, G., Underwood, I., Haas, H.: ‘Using a CMOS camera sensor for visible light communication’. IEEE Globecom Workshops, 2012, pp. 12441248.
    11. 11)
    12. 12)
    13. 13)
      • 13. Iizuka, N.: ‘OCC proposal of scope of standardization and applications’. IEEE 802.15 SG7a standardization documents, 2014.
    14. 14)
      • 14. Kuraki, K., Nakagata, S., Tanaka, R., Anan, T.: ‘Data transfer technology to enable communication between displays and smart devices’, FUJITSU Sci. Tech. J., 2014, 50, (1), pp. 4045.
    15. 15)
      • 15. Roberts, R.D.: ‘Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom)’. Wirel. and Optical Commun. Conf., 2013, pp. 645648.
    16. 16)
      • 16. Rajagopal, N., Lazik, P., Rowe, A.: ‘Hybrid visible light communication for cameras and low-power embedded devices’. Proc. ACM MobiCom Workshop Visible Light Communication Systems, 2014, pp. 3338.
    17. 17)
      • 17. Kuo, Y.-S., Pannuto, P., Hsiao, K.-J., Dutta, P.: ‘Luxapose: indoor positioning with mobile phones and visible light’. Proc. Annual Int. Conf. Mobile Computing and Networking, 2014, pp. 711.
    18. 18)
      • 18. Hu, W., Gu, H., Pu, Q.: ‘LightSync: unsynchronized visual communication over screen-camera links’. In Proc. MobiCom, 2013, pp. 1526.
    19. 19)
      • 19. Lee, H.-Y.: ‘Unsynchronized visible light Communications using rolling shutter camera: implementation and evaluation’. M.S. thesis, Dept. of Comput. Sci. and Inform. Eng., College of Elect. Eng. and Comput. Sci., Nat. Taiwan University, 2014, pp. 155.
    20. 20)
    21. 21)
      • 21. Nguyen, T., Le, N.T., Jang, Y.M.: ‘Asynchronous scheme for unidirectional optical camera communications (OCC)’. Int. Conf. Ubiquitous and Future Network, 2014, pp. 4851.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 25. Saha, N., Jang, Y.M.: ‘Analysis of imaging diversity for MIMO visible light communication’. Int. Conf. Ubiquitous and Future Network, 2014, pp. 2934.
    26. 26)
    27. 27)
      • 27. Ashok, A., Gruteser, M., Mandayam, N., Dana, K.: ‘Characterizing multiplexing and diversity in visual MIMO’. Int. Conf. Information Science and Systems, 2011, pp. 16.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 34. Roberts, R.: ‘The CamCom LLC dilema’. IEEE 802.15 IG7a standardization documents, 2013.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 38. Zhang, W., Chowdhury, M., Kavehrad, M.: ‘Asynchronous indoor positioning system based on visible light communications’, Opt. Eng., 2014, 53, (4), pp. 45105(1)45105(9).
    39. 39)
    40. 40)
      • 40. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University Press, 2004).
    41. 41)
    42. 42)
    43. 43)
      • 43. Yoshino, M., Haruyama, S., Nakagawa, M.: ‘High-accuracy positioning system using visible LED lights and image sensor’. IEEE Radio and Wireless Symp., 2008, pp. 439442.
    44. 44)
      • 44. Gaschler, A., Burschka, D., Hager, G.: ‘Epipolar-based stereo tracking without explicit 3D reconstruction’. Int. Conf. Pattern Recognition (ICPR), 2010, pp. 17551758.
    45. 45)
      • 45. Ifthekhar, M.S., Saha, N., Jang, Y.M.: ‘Neural network based indoor positioning technique in optical camera communication system’. Int. Conf. Indoor Positioning and Indoor Navigation, 2014, pp. 15.
    46. 46)
      • 46. Hsia, K.H., Lien, S.F., Wang, C.C., Su, J.P.: ‘Camera position estimation from image by ANFIS’. Int. Conf. Innovative Computing, Information Control, 2009, pp. 548551.
    47. 47)
      • 47. Omura, Y., Funabiki, S., Tanaka, T.: ‘A monocular vision-based position sensor using neural networks for automated vehicle following’. Proc. IEEE Int. Conf. Power Electron. Drive Syst., 1999, pp. 388393.
    48. 48)
      • 48. Lin, X., Ikawa, K., Hiroshashi, K.: ‘High-speed full-duplex multiaccess system for LED based wireless communications using visible light’. Proc. Int. Symp. Opt. Eng. Photon. Technol., 2009, pp. 15.
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
      • 55. Auluck, V., Roberts, R., Horisaki, K.: ‘Some CamCom applications’. IEEE 802.15 SG7a standardization documents, 2014.
    56. 56)
      • 56. Augmented reality using VLC’, http://www.visiblelightcomm.com/augmented-reality-using-vlc/, accessed November 2014.
    57. 57)
      • 57. GE brings ByteLight-enabled smart LED lights to stores’, http://www.spectrum.ieee.org/tech-talk/consumer-electronics/gadgets/ge-brings-bytelightenabled-smart-lighting-to-stores, accessed November 2014.
    58. 58)
      • 58. Sterling, G., Top, D.: ‘Mapping the indoor marketing opportunity’. Opus Indoor Report, 2014.
    59. 59)
      • 59. ByteLight illuminates the mobile wallet using LED lights’, https://www.gigaom.com/2013/07/31/bytelight-illuminates-the-mobile-wallet-using-led-lights/, accessed November 2014.
    60. 60)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2014.0151
Loading

Related content

content/journals/10.1049/iet-opt.2014.0151
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address