http://iet.metastore.ingenta.com
1887

Gain, amplified spontaneous emission and noise figure of bulk InGaAs/InGaAsP/InP semiconductor optical amplifiers

Gain, amplified spontaneous emission and noise figure of bulk InGaAs/InGaAsP/InP semiconductor optical amplifiers

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Bulk InGaAs layer under slight tensile strain, embedded in InGaAsP barriers and grown on InP, was used as semiconductor optical amplifier active layer for polarisation insensitive amplification. The material bandstructure was obtained by solving the Lüttinger–Kohn Hamiltonian, including tetragonal strain contribution. Study of the InGaAs material gain was performed by taking into account the effect of k-dependent bandgap shrinkage. The semiconductor optical amplifiers device amplified spontaneous emission and noise figure have been investigated as a function of temperature, carrier density and barrier height. Good agreement was obtained with the trends observed in the experimental characteristics. The authors show that a 100 nm bandwidth can be obtained with a difference between transverse electric and transverse magnetic emission kept constant, as required for polarisation independent amplifiers.

References

    1. 1)
      • M.J. Connelly . (2002)
        1. Connelly, M.J.: ‘Semiconductor optical amplifiers’ (Kluwer Academic Publishers, Dordrecht, 2002).
        .
    2. 2)
    3. 3)
      • A. Crottini , F. Salleras , P. Moreno , M.-A. Dupertuis , B. Deveaud , R. Brenot .
        3. Crottini, A., Salleras, F., Moreno, P., Dupertuis, M.-A., Deveaud, B., Brenot, R.: ‘Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme’, Photon. Technol. Lett., 2011, 47, pp. 977979.
        . Photon. Technol. Lett. , 977 - 979
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • F. Pommereau , R. Brenot , J. Landreau .
        13. Pommereau, F., Brenot, R., Landreau, J., et al: ‘Realization of optical semiconductor optical amplifier with homogeneous carrier density and low noise factor’. Proc. Int. Conf. Indium Phosphide Relat. Mater., May 2005, pp. 102105.
        . Proc. Int. Conf. Indium Phosphide Relat. Mater. , 102 - 105
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • G.E. Pikus , G.L. Bir .
        20. Pikus, G.E., Bir, G.L.: ‘Effect of deformation on the hole energy spectrum of germanium and silicon’, Sov. Phys. Solid State, 1960, l, pp. 15021517.
        . Sov. Phys. Solid State , 1502 - 1517
    21. 21)
      • E.O. Kane . (1982)
        21. Kane, E.O.: ‘Energy band theory’, in Paul, W. (Ed.): ‘Handbook on semiconductors’ (Amsterdam, North Holland, 1982), vol. 1, pp. 193217.
        .
    22. 22)
    23. 23)
    24. 24)
      • G.L. Bir , G.E. Pikus . (1974)
        24. Bir, G.L., Pikus, G.E.: ‘Symmetry and strain-induced effects in semiconductors’ (Wiley, New York, 1974).
        .
    25. 25)
      • S.L. Chuang . (1995)
        25. Chuang, S.L.: ‘Physics of optoelectronics devices’ (Wiley-Interscience, New York, 1995), chp. 4.
        .
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • G.D. Mahan . (1981)
        29. Mahan, G.D.: ‘Many-particle physics’ (Plenum Press, New York, 1981), chp. 5, pp. 374378.
        .
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • X. Marie , N. Balkan . (1992)
        37. Marie, X., Balkan, N.: ‘Semiconductor modeling techniques’, Springer Series 159, (Heidelberg, 1992), pp. 174175.
        .
    38. 38)
      • G. Bastard . (1992)
        38. Bastard, G.: ‘Wave mechanics applied to semiconductor heterostructures’ (Monographies de physique, Paris, 1992), pp. 246248.
        .
    39. 39)
    40. 40)
      • E.L. Ivchenko , G.E. Pikus . (1997)
        40. Ivchenko, E.L., Pikus, G.E.: ‘Superlattices and other heterostructures’ (Springer Ser.110, Berlin, 1997), pp. 5365.
        .
    41. 41)
    42. 42)
      • M.J. Connelly .
        42. Connelly, M.J.: private communication.
        .
    43. 43)
    44. 44)
      • H. Haug , S.W. Koch . (2004)
        44. Haug, H., Koch, S.W.: ‘Quantumtheory of the optical and electronic properties of semiconductors’ (World Scientific Publ., Singapore, 2004, 4th edn.), pp. 186188.
        .
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
      • S.L. Chuang . (1995)
        50. Chuang, S.L.: ‘Physics of optoelectronics devices’ (Wiley-Interscience, New York, 1995), p. 351.
        .
    51. 51)
      • G. Kweon .
        51. Kweon, G.: ‘Noise Figure of optical amplifiers’, J. Korean Phys. Soc., 2002, 41, pp. 617628.
        . J. Korean Phys. Soc. , 617 - 628
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2014.0064
Loading

Related content

content/journals/10.1049/iet-opt.2014.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address