Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime

Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Staggered InGaN quantum wells (QWs) are investigated both numerically and experimentally as improved active region for light-emitting diodes (LEDs) emitting at 520–525 nm. Based on a self-consistent six-band k·p method, band structures of both two-layer staggered InxGa1−xN/InyGa1−yN QW and three-layer staggered InyGa1−yN/InxGa1−xN/InyGa1−yN QW structures are investigated as active region to enhance the spontaneous emission radiative recombination rate (Rsp) for LEDs emitting at 520–525 nm. Numerical analysis shows significant enhancement of Rsp for both two-layer and three-layer staggered InGaN QWs as compared to that of the conventional InzGa1−zN QW. Significant reduction of the radiative carrier lifetime contributes to the enhancement of the radiative efficiency for both two-layer and three-layer staggered InGaN QW LEDs emitting at 520–525 nm. Three-layer staggered InGaN QW LEDs emitting at 520–525 nm was grown by metal-organic chemical vapour deposition (MOCVD) by employing graded-temperature profile. Power density-dependent cathodoluminescence (CL) measurements show the enhancement of peak luminescence by up to 3 times and integrated luminescence by 1.8–2.8 times for the three-layer staggered InGaN QW LED. Electroluminescence (EL) output power of the staggered InGaN QW LED exhibits 2.0–3.5 times enhancement as compared to that of the conventional InGaN QW LED. The experimental results show the good agreement with theory.

References

    1. 1)
      • S.L. Chuang , C.S. Chang . k•p method for strained wurtzite semiconductors. Phys. Rev. B. , 4 , 2491 - 2504
    2. 2)
      • H. Zhao , R.A. Arif , N. Tansu . Self consistent analysis of Type-II ‘W’ InGaN–GaNAs quantum well lasers. J. Appl. Phys. , 5
    3. 3)
      • I. Vurgaftman , J.R. Meyer . Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. , 6 , 3675 - 3696
    4. 4)
      • R.A. Arif , H. Zhao , Y.K. Ee , N. Tansu . Spontaneous emission and characteristics of staggered InGaN quantum-well light-emitting diodes. IEEE J. Quantum Electron. , 6 , 573 - 580
    5. 5)
      • C.G. Van de Walle , J. Neugebauer . Small valence-band offsets at GaN/InGaN heterojunctions. Appl. Phys. Lett. , 19 , 2577 - 2579
    6. 6)
      • J. Hader , J.V. Moloney , A. Thranhardt , S.W. Koch , J. Piprek . Interband transitions in InGaN quantum wells, Nitride semiconductor devices.
    7. 7)
      • R.M. Farrell , D.F. Feezell , M.C. Schmidt . Continuous-wave operation of AlGaN-cladding-free nonpolar m-plane InGaN/GaN laser diodes. Jpn. J. Appl. Phys. , 32 , L761 - L763
    8. 8)
      • S.H. Park , J. Park , E. Yoon . Optical gain in InGaN/GaN quantum well structures with embedded AlGaN delta layer. Appl. Phys. Lett. , 2
    9. 9)
      • N. Tansu , L.J. Mawst . Current injection efficiency of 1300-nm InGaAsN quantum-well lasers. J. Appl. Phys. , 5
    10. 10)
      • S.L. Chuang . (1995) Physics of optoelectronics devices.
    11. 11)
      • R.A. Arif , H. Zhao , N. Tansu . Type-II InGaN–GaNAs quantum wells active regions for lasers applications. Appl. Phys. Lett. , 1
    12. 12)
      • Y.K. Ee , P. Kumnorkaew , R.A. Arif . Optimization of light extraction efficiency of III-nitride light emitting diodes with self-assembled colloidal-based microlenses. IEEE J. Sel. Top. Quantum Electron. , 4 , 1218 - 1225
    13. 13)
      • J. Zhang , J. Yang , G. Simin . Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers. Appl. Phys. Lett. , 17 , 2668 - 2670
    14. 14)
      • J. Park , Y. Kawakami . Photoluminescence property of InGaN single quantum well with embedded AlGaN δ layer. Appl. Phys. Lett. , 20
    15. 15)
      • Y. Schwarz , H. Braun , K. Kojima , Y. Kawakami , S. Nagahama , T. Mukai . Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells. Appl. Phys. Lett. , 12
    16. 16)
      • I.H. Brown , P. Blood , P.M. Smowton . Time evolution of the screening of piezoelectric fields in InGaN quantum wells. IEEE J. Quantum Electron. , 12 , 1202 - 1208
    17. 17)
      • X. Guo , Y.L. Li , E.F. Schubert . Efficiency of GaN/InGaN light-emitting diodes with interdigitated mesa geometry. Appl. Phys. Lett. , 13 , 1936 - 1938
    18. 18)
      • S.H. Park , D. Ahn , J.W. Kim . High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes. Appl. Phys. Lett. , 4
    19. 19)
      • S.H. Park , S.L. Chuang . Many-body optical gain of wurtzite GaN-based quantum-well lasers and comparison with experiment. Appl. Phys. Lett. , 3 , 287 - 289
    20. 20)
      • M.R. Krames , M. Ochiai-Holcomb , G.E. Höfler . High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett. , 16 , 2365 - 2367
    21. 21)
      • J.K. Son , S.N. Lee , H.S. Paek . Radiative and non-radiative transitions in blue quantum wells embedded in AlInGaN-based laser diodes. Phys. Stat. Sol. (c) , 7 , 2780 - 2783
    22. 22)
      • M.F. Schubert , S. Chhajed , J.K. Kim . Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett. , 23
    23. 23)
      • M.R. Krames , O.B. Shchekin , R. Mueller-Mach . Status and future of high-power light-emitting diodes for solid-state lighting. J. Display Technol. , 2 , 160 - 175
    24. 24)
      • S. Nakamura , M. Senoh , N. Iwasa , S. Nagahama , T. Yamada , T. Mukai . Superbright green InGaN single-quantum-well-structure light-emitting diodes. Jpn. J. Appl. Phys. , 34 , L1332 - L1335
    25. 25)
      • S.H. Park , D. Ahn , B.H. Koo , J.W. Kim . Electronic and optical properties of staggered InGaN/InGaN quantum-well light-emitting diodes. Phys. Stat. Sol. A , 11 , 2637 - 2640
    26. 26)
      • J. Hader , J.V. Moloney , B. Pasenow . On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. , 26
    27. 27)
      • S.L. Chuang , C.S. Chang . A band-structure model of strained quantum-well wurtzite semiconductors. Semicond. Sci. Technol. , 3 , 252 - 263
    28. 28)
      • S.L. Chuang . Optical gain of strained wurtzite GaN quantum-well lasers. IEEE J. Quantum Electron. , 10 , 1791 - 1800
    29. 29)
      • H. Zhao , R.A. Arif , Y.K. Ee , N. Tansu . Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for lasers and light-emitting diodes. IEEE J. Quantum Electron , 1 , 66 - 78
    30. 30)
      • H. Zhao , G. Liu , X.H. Li . Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile. Appl. Phys. Lett. , 6
    31. 31)
      • R.A. Arif , Y.K. Ee , N. Tansu . Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes. Appl. Phys. Lett. , 9
    32. 32)
      • Y.C. Shen , G.O. Mueller , S. Watanabe , N.F. Gardner , A. Munkholm , M.R. Krames . Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. , 14
    33. 33)
      • H. Zhao , R.A. Arif , Y.K. Ee , N. Tansu . Optical gain analysis of strain-compensated InGaN–AlGaN quantum well active regions for lasers emitting at 420–500 nm. Opt. Quantum Electron. , 301 - 306
    34. 34)
      • H. Zhao , R.A. Arif , N. Tansu . Design analysis of staggered InGaN quantum wells light-emitting diodes at 500–540 nm. IEEE J. Sel. Top. Quantum Electron. , 4 , 1104 - 1114
    35. 35)
      • I. Vurgaftman , J.R. Meyer , J. Piprek . Electron bandstructure parameters, Nitride semiconductor devices.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2009.0050
Loading

Related content

content/journals/10.1049/iet-opt.2009.0050
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address