Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Delay-aware data collecting protocol for low-duty-cycle wireless sensor networks

Duty-cycled technology has been introduced as an efficient way to preserve node energy and prolong network lifetime for wireless sensor networks (WSNs). However, many applications with real-time feature require that some message must be sent to the sink node within a limited time. The authors propose a novel data collecting scheme – MTDR which aims to minimise transmission delay in low-duty-cycle WSNs. In MTDR, all the nodes are assigned to the corresponding levels according to the hop count to the sink node, and calculate their minimum transmission delay to the sink node based on the shortest path structure. Finally, simulation results show that their proposed algorithm can achieve better performance compared with some related works.

References

    1. 1)
      • 18. Cheng, L., Niu, J. W., Gu, Y., et al: ‘Achieving efficient reliable flooding in low-duty-cycle wireless sensor networks’, IEEE/ACM Trans. Netw., 2016, 24, (6), pp. 114.
    2. 2)
      • 20. Xin, G., Guan, L.: ‘Data gathering algorithm based load balance for wireless sensor networks’. Proc. 17th Int. Conf. Computer Communications and Networks, St. Thomas, 2008, pp. 760764.
    3. 3)
      • 9. Chen, X., Hu, X., Zhu, J.: ‘Minimum data aggregation time problem in wireless sensor networks’. Proc. First Int. Conf. Mobile Ad-Hoc & Sensor Networks, 2005, vol. 3794, pp. 133142.
    4. 4)
      • 6. Ergen, S.C., Varaiya, P.: ‘TDMA scheduling algorithms for wireless sensor networks’, Wirel. Netw., 2010, 16, (4), pp. 985997.
    5. 5)
      • 2. Ramanathan, N., Schoellhammer, T., Kohler, E.: ‘Suelo: human-assisted sensing for exploratory soil monitoring studies’. Proc. 7th ACM Conf. Embedded Networked Sensor Systems, Berkeley, November 2009, pp. 197210.
    6. 6)
      • 17. Niu, J.W., Cheng, L., Gu, Y., et al: ‘Minimum-delay and energy-efficient flooding tree in asynchronous low-duty-cycle wireless sensor networks’. Proc. 2013 IEEE Wireless Communications and Networking Conf., WCNC, Shanghai, 2013, pp. 12611266.
    7. 7)
      • 8. Zhao, J., Govindan, R.: ‘Understanding packet delivery performance in dense wireless sensor networks’. Proc. 1st Conf. Embedded Networked Sensor Systems, Los Angeles, 2003, pp. 113.
    8. 8)
      • 23. Fan, Z.Z.: ‘Delay-driven routing for low-duty-cycle sensor networks’, Int. J. Distrib. Sens. Netw., 2013, 2013, pp. 111.
    9. 9)
      • 15. Luo, S.Y., Mao, X.F., Sun, Y.M., et al: ‘Delay minimum data collection in the Low-duty-cycle wireless sensor networks’. Proc. 2012 IEEE Global Communications Conf., GLOBECOM, Anaheim, 2012, pp. 232237.
    10. 10)
      • 21. Xiao, M.J., Huang, L.S., Xing, K., et al: ‘Opportunistic data aggregation in low-duty-cycle wireless sensor networks with unreliable links’, Chin. J. Electron., 2013, 22, (3), pp. 599603.
    11. 11)
      • 3. Lin, C.Y., Peng, W.C., Tseng, Y.C.: ‘Efficient in-network moving object tracking in wireless sensor networks’, IEEE Trans. Mob. Comput., 2006, 5, (8), pp. 10441056.
    12. 12)
      • 12. Mathew, L.W., Yang, P., Zhang, X.Y., et al: ‘EDAD: energy-centric data collection with anycast in duty-cycled wireless sensor networks’. Proc. IEEE Wireless Communications and Networking Conf. WCNC, New Orleans, 2015, pp. 15601565.
    13. 13)
      • 1. Yick, J., Mukherjee, B., Ghosal, D.: ‘Wireless sensor network survey’, Comput. Netw., 2008, 52, (12), pp. 22922330.
    14. 14)
      • 16. Yang, F., Isabelle, A.B.: ‘Delivery ratio-maximized wakeup scheduling for ultra-low duty-cycled WSNs under real-time constraints’, Comput. Netw., 2011, 55, (3), pp. 497513.
    15. 15)
      • 19. Chen, Z.Y., Yang, G., Chen, L., et al: ‘A load-balanced data aggregation scheduling for duty-cycled wireless sensor networks’. Proc. 4th Int. Conf. Cloud Computing Technology and Science, Taipei, 2012, pp. 788793.
    16. 16)
      • 13. Lu, G., Sadagopant, N., Krishnamachari, B., et al: ‘Delay efficient sleep scheduling in wireless sensor networks’. Proc. IEEE InfoCom, 2005, pp. 24702481.
    17. 17)
      • 7. Zhou, G., He, T., Krishnamurthy, S., et al: ‘Impact of radio irregularity on wireless sensor networks’. Proc. 2th Conf. Mobile Systems, Applications and Services, Boston, 2004, pp. 125138.
    18. 18)
      • 5. Liu, H., Chu, X., Leung, Y.W., et al: ‘General maximal lifetime sensor-target surveillance problem and its solution’, IEEE Trans. Parallel Distrib. Syst., 2011, 22, (10), pp. 17571765.
    19. 19)
      • 11. Taewoo, L., Kim, D.S., Choo, H., et al: ‘A delay-aware scheduling for data aggregation in duty-cycled wireless sensor networks’. Proc. 9th Int. Conf. Mobile Ad-Hoc and Sensor Networks, Dalian, 2013, pp. 254261.
    20. 20)
      • 22. Kleinberg, J., Tardos, É.: ‘Algorithm design’ (Addison Wesley, 2005).
    21. 21)
      • 10. Yao, Y.J., Qing, C., Athanasios, V.V.: ‘EDAL: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks’, IEEE/ACM Trans. Netw., 2015, 23, (3), pp. 810823.
    22. 22)
      • 14. Fan, Z.Z., Bai, S., Wang, S., et al: ‘Delay-bounded transmission power control for low-duty-cycle sensor networks’, IEEE Trans. Wirel. Commun., 2015, 14, (6), pp. 31573170.
    23. 23)
      • 4. Cao, Q., Abdelzaher, T., He, T., et al: ‘Towards optimal sleep scheduling in sensor networks for rare-event detection’. Proc. 4th Int. Symp. Information Processing in Sensor Networks, Los Angeles, 2005, pp. 2027.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2017.0090
Loading

Related content

content/journals/10.1049/iet-net.2017.0090
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address