http://iet.metastore.ingenta.com
1887

Holistic assessment of call centre performance

Holistic assessment of call centre performance

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In modern call centres 60–70% of the operational costs come in the form of the human agents who take the calls. Ensuring that the call centre operates at lowest cost and maximum efficiency involves a trade-off of the cost of agents against lost revenue and increased customer dissatisfaction due to lost calls. Modelling the performance characteristics of a call centre in terms of the agent queue alone misses key performance influencers, specifically the interaction between channel availability at the media gateway and the time a call is queued. A blocking probability at the media gateway, as low as 0.45%, has a significant impact on the degree of queuing observed and therefore the cost and performance of the call centre.

Our analysis also shows how abandonment impacts queuing delay. However, the call centre manager has less control over this than the level of contention at the media gateway. Our commercial assessment provides an evaluation of the balance between abandonment and contention, and shows that the difference in cost between the best and worst strategy is £130K per annum, however this must be balanced against a possible additional £2.98 m exposure in lost calls if abandonment alone is used.

References

    1. 1)
      • N. Gans , G. Koole , A. Mandelbaum .
        1. Gans, N., Koole, G., Mandelbaum, A.: ‘Telephone call centers: a tutorial and literature review’, Manuf. Serv. Oper. Manage., 2003, 5, (2), pp. 79141.
        . Manuf. Serv. Oper. Manage. , 2 , 79 - 141
    2. 2)
      • D. Sharp . (2003)
        2. Sharp, D.: ‘Call center operation: design, operation, and maintenance’ (Digital Press, Amsterdam, 2003).
        .
    3. 3)
      • S. Halfin , W. Whitt .
        3. Halfin, S., Whitt, W.: ‘Heavy traffic limits for queues with many exponential servers’, Oper. Res., 1981, 29, pp. 567588.
        . Oper. Res. , 567 - 588
    4. 4)
      • W. Whitt .
        4. Whitt, W.: ‘Efficiency-driven heavy-traffic approximations for many-server queues with abandonments’, Manage. Sci., October2004, 50, (10), pp. 14491461.
        . Manage. Sci. , 10 , 1449 - 1461
    5. 5)
      • O. Garnett , A. Mandelbaum , M. Reiman .
        5. Garnett, O., Mandelbaum, A., Reiman, M.: ‘Designing a call center with impatient customers’, Manuf. Serv. Oper. Manag., Summer2002, 4, (3), pp. 208227.
        . Manuf. Serv. Oper. Manag. , 3 , 208 - 227
    6. 6)
      • W. Whitt .
        6. Whitt, W.: ‘Sensitivity of performance in the Erlang-A queueing model to changes in the model parameters’, Oper. Res., 2006, 54, (2), pp. 247260.
        . Oper. Res. , 2 , 247 - 260
    7. 7)
      • A. Mandelbaum , S. Zeltyn .
        7. Mandelbaum, A., Zeltyn, S.: ‘The impact of customers’ patience on delay and abandonment: some empirically-driven experiments with the M/M/n + G queue’, OR Spectrum, July2004, 26, (3), pp. 377411.
        . OR Spectrum , 3 , 377 - 411
    8. 8)
      • L.E. Miller .
        8. Miller, L.E.: Formulas For Blocking Probability. Available at https://www.yumpu.com/en/document/view/19394685/formulas-for-blocking-probability1-advanced-network-technologies-, accessed January 2017..
        .
    9. 9)
      • O. Jouini , A. Roubos .
        9. Jouini, O., Roubos, A.: ‘On multiple priority multi-server queues with impatience’, J. Oper. Res. Soc., May2014, 65, (5), pp. 616632.
        . J. Oper. Res. Soc. , 5 , 616 - 632
    10. 10)
      • O. Jouini , O.Z. Aksin , Y. Dallery .
        10. Jouini, O., Aksin, O.Z., Dallery, Y.: ‘Call centers with delay information: models and insights’, Manuf. Serv. Oper. Manag., Fall2011, 13, (4), pp. 534548.
        . Manuf. Serv. Oper. Manag. , 4 , 534 - 548
    11. 11)
      • G. Koole , A. Pot .
        11. Koole, G., Pot, A.: ‘A note on profit maximization and monotonicity for inbound call centers’, Oper. Res., 2011, 59, (5), pp. 13041308.
        . Oper. Res. , 5 , 1304 - 1308
    12. 12)
      • O. Jouini , G.M. Koole , A. Roubos .
        12. Jouini, O., Koole, G.M., Roubos, A.: ‘Performance indicators for call centers with impatience’, IIE Trans., 01/2012, doi: 10.1080/0740817X.2012.712241.
        . IIE Trans.
    13. 13)
      • O. Jouini .
        13. Jouini, O.: ‘Analysis of a last come first served queueing system with customer abandonment’, Comput. Oper. Res., 2012, 39, (12), pp. 30403045.
        . Comput. Oper. Res. , 12 , 3040 - 3045
    14. 14)
      • A. Mandelbaum , P. Momcilovic .
        14. Mandelbaum, A., Momcilovic, P.: ‘Queues with many servers and impatient customers’, OR, 2012, 37, (1), pp. 4165.
        . OR , 1 , 41 - 65
    15. 15)
      • R. Ibrahim , P. L'Ecuyer .
        15. Ibrahim, R., L'Ecuyer, P.: ‘Forecasting call center arrivals: fixed-effects, mixed-effects, and bivariate models’, Manuf. Serv. Oper. Manage., 2013, 15, (1), pp. 7285.
        . Manuf. Serv. Oper. Manage. , 1 , 72 - 85
    16. 16)
      • A. Mandelbaum , S. Zeltyn .
        16. Mandelbaum, A., Zeltyn, S.: ‘The Palm/Erlang-A Queue, with Applications to Call Centers’, June 19, 2005. Available at http://ie.technion.ac.il/serveng/References/Erlang_A.pdf, accessed September 2015..
        .
    17. 17)
      • G.M. Koole , B.F. Nielsen , T.B. Nielsen .
        17. Koole, G.M., Nielsen, B.F., Nielsen, T.B.: ‘Optimization of overflow policies in call centers’, Probab. Eng. Inf. Sci., 2015, 29, (3), pp. 461471.
        . Probab. Eng. Inf. Sci. , 3 , 461 - 471
    18. 18)
      • A. Jaoua , P. L'Ecuyer , L. Delorme .
        18. Jaoua, A., L'Ecuyer, P., Delorme, L.: ‘Call-type dependence in multiskill call centers’, Simul. Trans. Soc. Model. Simul. Int., 2013, 89, (6), pp. 722734.
        . Simul. Trans. Soc. Model. Simul. Int. , 6 , 722 - 734
    19. 19)
      • W. Chan , G. Koole , P. L'Ecuyer .
        19. Chan, W., Koole, G., L'Ecuyer, P.: ‘Dynamic call center routing policies using call waiting and agent idle times’, Manuf. Serv. Oper. Manag., 2014, 16, (4), pp. 544560.
        . Manuf. Serv. Oper. Manag. , 4 , 544 - 560
    20. 20)
      • W. Chan , T. A. Ta , P. L'Ecuyer .
        20. Chan, W., Ta, T. A., L'Ecuyer, P., et al: ‘Chance-constrained staffing with recourse for multi-skill call centers with arrival-rate uncertainty’. Proc. of the 2014 Winter Simulation Conf., IEEE Press, 2014, pp. 41034104.
        . Proc. of the 2014 Winter Simulation Conf. , 4103 - 4104
    21. 21)
      • M. Thiongane , W. Chan , P. L'Ecuyer .
        21. Thiongane, M., Chan, W., L'Ecuyer, P.: ‘Waiting time predictors for multiskill call centers’, 2015 Winter Simulation Conf., December 2015, Huntington Beach, United States.
        . 2015 Winter Simulation Conf., December 2015
    22. 22)
      • W. Whitt , O. Perry .
        22. Whitt, W., Perry, O.: ‘Achieving rapid recovery in an overload control for a large-scale service system’, INFORMS J. Comput., Summer2015, 27, (3), pp. 491506.
        . INFORMS J. Comput. , 3 , 491 - 506
    23. 23)
      • G. Koole , B. Legros , O. Jouini .
        23. Koole, G., Legros, B., Jouini, O.: ‘Adaptive threshold policies for multi-channel call centers’, IIE Trans., 2015, 47, (4), pp. 414430.
        . IIE Trans. , 4 , 414 - 430
    24. 24)
      • G. Koole , A. Roubos , R. Stolletz .
        24. Koole, G., Roubos, A., Stolletz, R.: ‘Service level variability of inbound call centers’, Manuf. Serv. Oper. Manag., 2012, 14, (3), pp. 402413.
        . Manuf. Serv. Oper. Manag. , 3 , 402 - 413
    25. 25)
      • W. Whitt , S. Kim .
        25. Whitt, W., Kim, S.: ‘Estimating waiting times with the time-varying little's law’, Probab. Eng. Inf. Sci., 2013, 27, pp. 471506.
        . Probab. Eng. Inf. Sci. , 471 - 506
    26. 26)
      • W. Whitt , S. Kim .
        26. Whitt, W., Kim, S.: ‘Statistical analysis with little's law’, Oper. Res., July–August2013, 61, (4), pp. 10301045.
        . Oper. Res. , 4 , 1030 - 1045
    27. 27)
      • W. Whitt .
        27. Whitt, W.: ‘Heavy-traffic limits for queues with periodic arrival rates’, Oper. Res. Lett., 2014, 42, pp. 458461.
        . Oper. Res. Lett. , 458 - 461
    28. 28)
      • W. Whitt , O. Perry .
        28. Whitt, W., Perry, O.: ‘Diffusion approximation for an overloaded X model via a stochastic averaging principle’, Queueing Syst., 2014, 76, pp. 347401.
        . Queueing Syst. , 347 - 401
    29. 29)
      • W. Whitt , O. Perry .
        29. Whitt, W., Perry, O.: ‘A fluid limit for an overloaded X model via a stochastic averaging principle’, Math. Oper. Res., May2013, 38, (2), pp. 294349.
        . Math. Oper. Res. , 2 , 294 - 349
    30. 30)
      • W. Whitt , G. Pang .
        30. Whitt, W., Pang, G.: ‘Two-parameter heavy-traffic limits for infinite-server queues with dependent service times’, Queueing Syst., 2013, 73, (2), pp. 119146.
        . Queueing Syst. , 2 , 119 - 146
    31. 31)
      • W. Whitt , Y. Liu .
        31. Whitt, W., Liu, Y.: ‘Many-server heavy-traffic limits for queues with time-varying parameters’, Ann. Appl. Probab., 2014, 24, (1), pp. 378421.
        . Ann. Appl. Probab. , 1 , 378 - 421
    32. 32)
      • W. Whitt , Y. Liu .
        32. Whitt, W., Liu, Y.: ‘Algorithms for time-varying networks of many-server fluid queues’, INFORMS J. Comput., 2014, 26, (1), pp. 5973.
        . INFORMS J. Comput. , 1 , 59 - 73
    33. 33)
      • W. Whitt , S. Kim .
        33. Whitt, W., Kim, S.: ‘Choosing arrival process models for service systems: tests of a nonhomogeneous poisson process’, Nav. Res. Logist., 2014, 61, (1), pp. 6690.
        . Nav. Res. Logist. , 1 , 66 - 90
    34. 34)
      • W. Whitt , Y. Liu .
        34. Whitt, W., Liu, Y.: ‘Stabilizing performance in networks of queues with time-varying arrival rates’, Probab. Eng. Inf. Sci., 2014, 28, (4), pp. 419449.
        . Probab. Eng. Inf. Sci. , 4 , 419 - 449
    35. 35)
      • R. Ibrahim , H. Ye , P. L'Ecuyer .
        35. Ibrahim, R., Ye, H., L'Ecuyer, P., et al: ‘Modeling and forecasting call center arrivals: a literature survey’, Int. J. Forecast. Case Study, July–September2016, 32, (3), pp. 865874.
        . Int. J. Forecast. Case Study , 3 , 865 - 874
    36. 36)
      • A. Roubos , S. Bhulai , G.M. Koole . (2016)
        36. Roubos, A., Bhulai, S., Koole, G.M.: ‘Flexible staffing for call centers with non-stationary arrival rates’, in Boucherie, Richard, van Dijk, Nico(EDS): ‘Markov decision processes in practice’ (Springer, 2016).
        .
    37. 37)
      • W. Whitt .
        37. Whitt, W.: ‘Offered load analysis for staffing’, Manuf. Serv. Oper. Manag., Spring2013, 15, (2), pp. 166169.
        . Manuf. Serv. Oper. Manag. , 2 , 166 - 169
    38. 38)
      • G. Koole , O. Jouini , A. Roubos .
        38. Koole, G., Jouini, O., Roubos, A.: ‘Performance indicators for call centers with impatience’, IIE Trans., 2013, 45, (3), pp. 341354.
        . IIE Trans. , 3 , 341 - 354
    39. 39)
      • R. Ibrahim , P. L'Ecuyer , H. Shen .
        39. Ibrahim, R., L'Ecuyer, P., Shen, H., et al: ‘Inter-dependent, heterogeneous, and time-varying service-time distributions in call centers’, Eur. J. Oper. Res., 16 April2016, 250, (2), pp. 480492.
        . Eur. J. Oper. Res. , 2 , 480 - 492
    40. 40)
      • L. Brown , N. Gans , A. Mandelbaum .
        40. Brown, L., Gans, N., Mandelbaum, A., et al: ‘Statistical analysis of a telephone call center: a queueing science perspective’, J. Am. Stat. Assoc., 2005, 100, (469), pp. 3650.
        . J. Am. Stat. Assoc. , 469 , 36 - 50
    41. 41)
      • M.A. Feinberg .
        41. Feinberg, M.A.: ‘Performance characteristics of automated call distribution systems’. GLOBECOM ‘90, IEEE, 1990, pp. 415419.
        . GLOBECOM ‘90 , 415 - 419
    42. 42)
      • A. W. Massey , B. R. Wallace .
        42. Massey, A. W., Wallace, B. R.: An optimal design of the M/M/C/K queue for call centers. Available at www.cs.cmu.edu/~harchol/WORMS04/talks/massey.ppt.
        .
    43. 43)
      • A. Weerasinghe , A. Mandelbaum .
        43. Weerasinghe, A., Mandelbaum, A.: ‘Abandonment vs. blocking in many-server queues: asymptotic optimality in the QED regime’, QUESTA, 2013, 75, (2), pp. 279337.
        . QUESTA , 2 , 279 - 337
    44. 44)
      • J.M. Pitts , J.A. Schormans .
        44. Pitts, J.M., Schormans, J.A.: ‘Configuring IP QoS mechanisms for graceful degradation of real-time services’. MILCOM 2006 – 2006 IEEE Military Communications Conf., 23–25 October 2006, pp. 17.
        . MILCOM 2006 – 2006 IEEE Military Communications Conf. , 1 - 7
    45. 45)
      • A. Li , W. Whitt , J. Zhao .
        45. Li, A., Whitt, W., Zhao, J.: ‘Staffing to stabilize blocking in loss models with time-varying arrival rates’, Probab. Eng. Inf. Sci., April2016, 30, (02), pp. 185211.
        . Probab. Eng. Inf. Sci. , 2 , 185 - 211
    46. 46)
      • M. Tschaikowski , M. Tribastone .
        46. Tschaikowski, M., Tribastone, M.: ‘Insensitivity to service-time distributions for fluid queueing models’. Proc. of the 7th Int. Conf. on Performance Evaluation Methodologies and Tools, 2013, pp. 273281.
        . Proc. of the 7th Int. Conf. on Performance Evaluation Methodologies and Tools , 273 - 281
    47. 47)
      • D.Y. Burman , D.R. Smith .
        47. Burman, D.Y., Smith, D.R.: ‘A Light-Traffic Theorem for Multi-Server Queues’, Mathematics of Operations Research, Feb1983, 8, (1), pp. 1525.
        . Mathematics of Operations Research , 1 , 15 - 25
    48. 48)
      • R. Feinberg , S. Kim , L. Hokama .
        48. Feinberg, R., Kim, S., Hokama, L., et al: ‘Operational determinants of caller satisfaction in the call center’, Int. J. Serv. Ind. Manage., 2000, 11, (2), pp. 131141.
        . Int. J. Serv. Ind. Manage. , 2 , 131 - 141
    49. 49)
      • L. Boardman Liu .
        49. Boardman Liu, L.: ‘Operationalizing service quality: providers’ perspective’. Northeast Decision Sciences Institute Proc., 2010, pp. 533538.
        . Northeast Decision Sciences Institute Proc. , 533 - 538
    50. 50)
      • L. Boardman Liu .
        50. Boardman Liu, L.: ‘Operationalizing service quality: customers’ pPerspective’. Proc. for the Northeast Region Decision Sciences Institute, 2011, pp. 13261331.
        . Proc. for the Northeast Region Decision Sciences Institute , 1326 - 1331
    51. 51)
      • I. Mitrani . (1998)
        51. Mitrani, I.: ‘Probabilistic modelling’ (Cambridge University Press, 1998).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2017.0018
Loading

Related content

content/journals/10.1049/iet-net.2017.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address