Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free SCGRP: SDN-enabled connectivity-aware geographical routing protocol of VANETs for urban environment

Vehicular ad hoc network (VANET) is a backbone of intelligent transportation system that is envisaged to play a significant role in the futuristic smart cities for safety and traffic management. Designing an optimal multi-hop routing protocol with lower transmission delay and reduced overhead has remained to be a challenge owing to the inability of existing VANET architecture to handle scalability and flexibility efficiently. The present work incorporates an emerging network paradigm called software defined network (SDN) in VANETs. The SDN provides a global view of the network topology and includes programmability to vehicular networks. The architecture manages the complex and highly dynamic vehicular network in an abstract and simplified way by decoupling the control plane from the data plane. The work introduces a SDN-enabled connectivity-aware geographical routing protocol (SCGRP), a performance-enhanced protocol for an optimised transmission of data packets. The SCGRP is simulated using MININET-Wi-Fi and SUMO and the results are evaluated over the existing centralised routing protocol (CRP) routing protocol to prove its better performance.

References

    1. 1)
      • 2. Asefi, M., Céspedes, S., Shen, X., et al: ‘A seamless quality-driven multi-hop data delivery scheme for video streaming in urban VANET scenarios’. IEEE Int. Conf. Communications (ICC), 2011, pp. 15.
    2. 2)
      • 5. ‘The OpenFlow Consortium’. Available at http://www.openflowswitch.org/wp/downloads, accessed July 2016.
    3. 3)
      • 4. Hakiri, A., Berthou, P.: ‘Leveraging SDN for the 5G networks: trends, prospects and challenges’, J. Mob. Wirel. Commun., 2015, pp. 124.
    4. 4)
      • 1. Seredynski, M., Bouvry, P.: ‘A survey of vehicular-based cooperative traffic information systems’. IEEE Int. Conf. Intelligent Transportation Systems (ITSC), 2011, pp. 163168.
    5. 5)
      • 10. Yuan, A.S., Fang, H.T., Wu, Q.: ‘OpenFlow based hybrid routing in wireless sensor networks’. Proc. Int. IEEE Conf. Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014, pp. 15.
    6. 6)
      • 18. He, Z., Cao, J., Liu, X.: ‘SDVN: enabling rapid network innovation for heterogeneous vehicular communication’, IEEE Netw., 2016, 30, (4), pp. 1015.
    7. 7)
      • 13. Zhu, L., Li, C., Li, B., et al: ‘Geographic routing in multilevel scenarios of vehicular ad hoc networks’, IEEE Trans. Veh. Technol., 2016, 65, (9), pp. 77407753.
    8. 8)
      • 9. Cai, X., He, Y., Zhao, C., et al: ‘LSGO: link state aware geographic opportunistic routing protocol for VANETs’, EURASIP J. Wirel. Commun. Netw., 2014, (1), p. 96.
    9. 9)
      • 17. He, Z., Zhang, D., Liang, J.: ‘Cost-efficient sensory data transmission in heterogeneous software-defined vehicular networks’, IEEE Sens. J., 2016, 16, (20), pp. 73427354.
    10. 10)
      • 12. Zhu, M., Cao, J., Pang, D., et al: ‘SDN-based routing for efficient message propagation in VANET’. Int. Conf. on Wireless Algorithms, Systems, and Applications, 2015, pp. 788797.
    11. 11)
      • 6. Abolhasan, M., Lipman, J., Ni, W., et al: ‘Software-defined wireless networking: centralized, distributed, or hybrid?’, IEEE Netw., 2015, 29, (4), pp. 3238.
    12. 12)
      • 8. Tripp-Barba, C., Urquiza-Aguiar, L., Igartua, M.A., et al: ‘A multimetric, map-aware routing protocol for VANETs in urban areas’, Sensors, 2014, 14, (2), pp. 21992224.
    13. 13)
      • 15. Zhu, L., Li, C., Wang, Y., et al: ‘On stochastic analysis of greedy routing in vehicular networks’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (6), pp. 33533366.
    14. 14)
      • 14. Salkuyeh, M.A., Abolhassani, B.: ‘An adaptive multipath geographic routing for video transmission in urban VANETs’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (10), pp. 28222831.
    15. 15)
      • 7. Xiang, Y., Liu, Z., Liu, R., et al: ‘GeoSVR: a map-based stateless VANET routing’, Ad Hoc Netw., 2013, (11), pp. 21252135.
    16. 16)
      • 3. Hanshi, S.M., Kadhum, M.M.: ‘Geographic routing protocol issues in vehicular ad hoc networks’. Int. IEEE Conf. RFID-Technologies and Applications (RFID-TA), 2013, pp. 17.
    17. 17)
      • 20. ‘Mininet-WiFi’. Available at https://www.mininet.org, accessed on June 2016.
    18. 18)
      • 11. Ku, I., Lu, Y., Gerla, M., et al: ‘Towards software-defined VANET: architecture and services’. IEEE Ad Hoc Networking Workshop (MED-HOC-NET), 2014, pp. 103110.
    19. 19)
      • 19. ‘OpenDayLight Controller’. Available at https://www.opendaylight.org, accessed on June 2016.
    20. 20)
      • 16. Cao, Y., Sun, Z., Wang, N., et al: ‘Geographic-based spray-and-relay (GSaR): an efficient routing scheme for DTNs’, IEEE Trans. Veh. Technol., 2015, 64, (4), pp. 15481564.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2016.0117
Loading

Related content

content/journals/10.1049/iet-net.2016.0117
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address