access icon free Random room mobility model and extra-wireless body area network communication in hospital buildings

Wireless body area networks (WBANs) can help in enabling efficient patient monitoring solution for ubiquitous healthcare. Communication in WBANs is undertaken in two phases: intra-WBAN and extra-WBAN. The prevailing WBANs use cellular network or WiFi in the extra-WBAN phase involving communication between the on-body coordinator and access points (APs) connected to the medical server through the internet. The medical applications of the WBANs have stringent requirements of low end-to-end delay and high packet delivery ratio. The authors evaluate the performance of extra-WBAN communication in the network of WBANs which is deployed within a building environment. They proposed a mobility model named random room mobility (RRM), which is used to capture the dynamics of WBAN user mobility within the building. They studied the performance of extra-WBAN communication using the proposed mobility model and a random waypoint mobility model. The metrics used in evaluating the performance are packet drop ratio, average node-to-AP delay and average residual energy per node. The authors show that with an increase in the number of WBANs, the traffic generation rate and the payload size have high impact on the packet loss in the network. They studied the performance of extra-WBAN communication using the priority mode available in IEEE 802.11 for provisioning quality-of-service (QoS). We show that it is suitable for medical applications, when the size of network consisting of WBANs, including the QoS-enabled WBANs, is small.

Inspec keywords: hospitals; telecommunication computing; medical computing; body area networks; ubiquitous computing; quality of service; patient monitoring

Other keywords: medical server; traffic generation rate; QoS; extra wireless body area network communication; quality-of-service; random room mobility model; end-to-end delay; WiFi; ubiquitous healthcare; WBAN communication; random room mobility; cellular network; Internet; AP; hospital buildings; building environment; access points; packet delivery ratio; patient monitoring solution; RRM; medical applications; random waypoint mobility model

Subjects: Mobile, ubiquitous and pervasive computing; Communications computing; Biomedical communication; Mobile radio systems; Biology and medical computing

References

    1. 1)
      • 33. A standard for Wireless Body Area Networks, IEEE 802.15.6, Feb. 2012.
    2. 2)
      • 31. IEEE Standard for Local and metropolitan area networks Part 15.4: Low-Rate Wireless Personal Area Networks (LRWPANs), IEEE Std 802.15.4eTM-2012, April 2012.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 3. Movassaghi, S., Arab, P., Abolhasan, M.: ‘Wireless technologies for body area networks: characteristics and challenges’. 2012 Int. Symp. on Communications and Information Technologies (ISCIT), October 2012, pp. 4247.
    10. 10)
      • 10. Francisco, R.D.: ‘Indoor channel measurements and models at 2.4 GHz in a hospital’. Proc. of the IEEE Global Telecommunications Conf. (GLOBECOM 2010), 2010, pp. 16.
    11. 11)
      • 16. Morlot, F., Elayoubi, S., Baccelli, F.: ‘An interaction-based mobility model for dynamic hot spot analysis’. Proc. of the IEEE INFOCOM, 2010, pp. 19.
    12. 12)
    13. 13)
      • 1. Liu, B., Yan, Z., Chen, C.W.: ‘MAC protocol in wireless body area networks for e-health: challenges and a context-aware design’, IEEE Wirel. Commun., 2013, 20, (4), pp. 6472.
    14. 14)
      • 21. Ahuja, A., Venkateswarlu, K., Krishna, P.V.: ‘Stochastic characteristics and simulation of the random waypoint mobility model’, CoRR, 2012, abs/1203.3920.
    15. 15)
    16. 16)
      • 41. NS-3 Network Simulator, http://www.nsnam.org/.
    17. 17)
    18. 18)
      • 30. Li, H., Tan, J.: ‘Heartbeat-driven medium-access control for body sensor networks’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (1), pp. 4451.
    19. 19)
    20. 20)
      • 4. Park, C., Chou, P., Bai, Y., Matthews, R., Hibbs, A.: ‘An ultra-wearable, wireless, low power ECG monitoring system’. Proc. of the IEEE Biomedical Circuits and Systems Conf. (BioCAS), 2006, pp. 241244.
    21. 21)
      • 38. Zhuang, W., Zhou, Y.: ‘A survey of cooperative MAC protocols for mobile communication networks’, J. Internet Technol., 2013, 14, (4), pp. 541560.
    22. 22)
    23. 23)
      • 25. Ye, W., Heidemann, J., Estrin, D.: ‘An energy-efficient MAC protocol for wireless sensor networks’. Proc. Twenty-First Annual Joint Conf. of the IEEE Computer and Communications Societies (INFOCOM 2002), 2002, vol. 3, pp. 15671576.
    24. 24)
      • 19. Yen, Y.-S., Chen, L.-Y., Chi, T.-Y., Chao, H.-C.: ‘A novel predictive scheduling handover on mobile IPv6’, Telecommun. Syst., 2013, 52, (2), pp. 461473.
    25. 25)
    26. 26)
      • 13. Johnson, D.B., Maltz, D.A.: ‘Dynamic source routing in ad hoc wireless networks’ (Mobile Computing. Kluwer Academic Publishers, 1996), pp. 153181.
    27. 27)
    28. 28)
      • 34. Mahapatro, J., Misra, S., Manjunatha, M., Islam, N.: ‘Interference-aware channel switching for use in WBAN with humansensor interface’. Proc. of the 4th Int. Conf. on Intelligent Human Computer Interaction (IHCI), 2012, pp. 15.
    29. 29)
      • 36. Mahapatro, J., Misra, S., Mahadevappa, M., Islam, N.: ‘Interference mitigation between WBAN equipped patients’. Proc. 9th Int. Conf. Wireless and Optical Communication Network (WOCN 2012), Indore, India, September 2012.
    30. 30)
      • 27. Ye, W., Silva, F., Heidemann, J.: ‘Ultra-low duty cycle MAC with scheduled channel polling’. Proc. of the 4th Int. Conf. on Embedded Networked Sensor Systems (SenSys ’06), 2006, pp. 321334.
    31. 31)
    32. 32)
      • 6. Braem, B., Latre, B., Moerman, I., Blondia, C., Demeester, P.: ‘The wireless autonomous spanning tree protocol for multihop wireless body area networks’. Proc. of the 3rd Annual Int. Conf. on Mobile and Ubiquitous Systems – Workshops, 2006, pp. 18.
    33. 33)
      • 37. Mahapatro, J., Misra, S., Mahadevappa, M., Islam, N.: ‘Interference-aware MAC scheduling and admission control for multiple mobile WBANs used in healthcare monitoring’, Int. J. Commun. Syst., DOI: 10.1002/dac.2768, 2014.
    34. 34)
      • 26. Dam, T.V., Langendoen, K.: ‘An adaptive energy-efficient MAC protocol for wireless sensor networks’. Proc. of the 1st ACM Int. Conf. on Embedded Networked Sensor Systems (SenSys ’03), 2003, pp. 171180.
    35. 35)
      • 22. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11TM-2007 (Revision of IEEE Std 802.11–1999), 2007.
    36. 36)
      • 28. Ameen, M., Ullah, N., Chowdhury, M., Islam, S., Kwak, K.: ‘A power efficient MAC protocol for wireless body area networks’, EURASIP J. Wirel. Commun. Netw., 2012, (33), pp. 117.
    37. 37)
    38. 38)
      • 29. Kwak, K., Ameen, M.A., Huh, J.: ‘Power efficient wakeup mechanisms for wireless body area networks’. Proc. of the 6th Int. Symp. on Medical Information and Communication Technology (ISMICT ’12), March 2012, pp. 16.
    39. 39)
    40. 40)
    41. 41)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2014.0009
Loading

Related content

content/journals/10.1049/iet-net.2014.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading