access icon free Performance analysis of contention-based access periods and service periods of 802.11ad hybrid medium access control

In this study, the authors present an analytical model for the contention-based access periods (CBAPs) and service periods (SPs) as specified in the medium access control (MAC) layer of IEEE 802.11ad standards. The analytical model for CBAP is based on a two-dimensional Markov chain which captures the hybrid nature of IEEE 802.11ad MAC. The Markov chain is used to obtain important metrics like MAC throughput and average frame service time. The SPs are modelled as a M/G/1 queueing system with vacations. Using this model, the delay experienced by packets is calculated. The accuracy of the analytical models is established by extensive simulation results. A brief insight into optimal allocation of SP and CBAP is also discussed.

Inspec keywords: wireless LAN; Markov processes; access protocols

Other keywords: IEEE 802.11ad MAC; average frame service time; IEEE 802.11ad standards; two-dimensional Markov chain; SP; service periods; CBAP; contention-based access periods; MAC throughput; hybrid medium access control; medium access control layer

Subjects: Protocols; Local area networks; Markov processes; Protocols; Radio links and equipment; Markov processes; Computer communications

References

    1. 1)
    2. 2)
      • 20. Sien, W., Graham, K., Muri, P., Miller, T.: ‘60 GHz wireless link using frequency division duplex QPSK architecture’, University of Florida, project 6374.
    3. 3)
      • 4. IEEE 802.11ad: ‘IEEE Standard for Information Technology Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band’, October 2012.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 20. Sien, W., Graham, K., Muri, P., Miller, T.: ‘60 GHz wireless link using frequency division duplex QPSK architecture’, University of Florida, project 6374.
    10. 10)
      • 16. Ni, Q., Li, T., Turletti, T., Xiao, Y.: ‘Saturation throughput analysis of error-prone 802.11 wireless networks’, J. Wirel. Commun. Mobile Comput., 2005, 5, (8), pp. 945956.
    11. 11)
      • 17. Cox, D.R.: ‘Renewal theory’ (Science Paperbacks, 1967).
    12. 12)
      • 19. Abdrabou, A., Zhuang, W.: ‘Service time approximation in IEEE 802.11 single-hop ad hoc networks’, IEEE Trans. Wirel. Commun., 2008, 7, (1), pp. 305313 (doi: 10.1109/TWC.2008.060530).
    13. 13)
      • 24. Daneshgaran, F., Laddomada, M., Mesiti, F., Mondin, M.: ‘Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects’, IEEE Trans. Wirel. Commun., 2008, 7, (4), pp. 12761286 (doi: 10.1109/TWC.2008.060859).
    14. 14)
      • 10. Jacob, M., Mbianke, C., Kurner, T.: ‘A dynamic 60 GHz radio channel model for system level simulations with MAC protocols for IEEE 802.11ad’. Proc. IEEE 14th Int. Symp. on Consumer Electronics (ISCE) 2010, June 2010, pp. 15.
    15. 15)
      • 14. Charfi, E., Chaari, L., Kamoun, L.: ‘PHY/MAC enhancements and QoS mechanisms for very high throughput WLANs: a survey’. IEEE Communications Surveys & Tutorials, 2013.
    16. 16)
      • 3. IEEE 802.11: ‘IEEE Standard for Information Technology Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications’, 2012.
    17. 17)
      • 4. IEEE 802.11ad: ‘IEEE Standard for Information Technology Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band’, October 2012.
    18. 18)
      • 1. Cordeiro, C.: ‘Evaluation of medium access technologies for next generation millimeter wave WLAN and WPAN’. Proc. Int. Conf. on Communication, Dresden, Germany, June 2009.
    19. 19)
      • 12. Nagai, Y., Ochiai, M., Shimizu, N., Shibuya, A.: ‘A throughput performance for a point-to-multipoint gigabit WLAN system on 60 GHz millimeter wave’. Seventh IEEE Consumer Communications and Networking Conference (CCNC), 2010, January 2010.
    20. 20)
      • 8. Park, M., Cordeiro, C., Perahia, E., Yang, L.L.: ‘QoS considerations for 60 GHz wireless networks’. Proc. IEEE GLOBECOM Workshops, December 2009, pp. 16.
    21. 21)
      • 13. Vaughan-Nichols, S.J.: ‘Gigabit Wi-Fi is on its way’, IEEE Comput., 2010, 43, (11), pp. 1114 (doi: 10.1109/MC.2010.318).
    22. 22)
      • 6. Cordeiro, C., Akhmetov, D., Park, M.: ‘IEEE 802.11ad: introduction and performance evaluation of the first multi-Gbps WiFi technology’. Proc. 2010 ACM Int. Workshop on mmWave Communications: from Circuits to Networks (mmCom ’10), Chicago, IL, September 2010.
    23. 23)
      • 18. Bertsekas, D., Gallager, R.: ‘Data networks’ (Pearson Education, 2009).
    24. 24)
      • 21. Chatzimisios, P., Boucouvalas, A.C., Vitsas, V.: ‘IEEE 802.11 packet delay – a finite retry limit analysis’. Proc. IEEE Global Telecommunications Conf. (Globecom 03), 2003, pp. 950954.
    25. 25)
      • 15. Bianchi, G.: ‘Performance analysis of the IEEE 802.11 distributed coordination function’, IEEE J. Sel. Areas Commun., 2000, 18, (3), pp. 535547 (doi: 10.1109/49.840210).
    26. 26)
      • 23. MATLAB 7.10.0 (R2010a): The MathWorks, Inc., Natick, Massachusetts, USA.
    27. 27)
      • 7. Chang, Y.-C., Jiang, J.-R., Sheu, J.-P.: ‘An asynchronous duty cycle adjustment MAC protocol for wireless sensor networks’, J. Internet Technol., 2012, 13, (3), pp. 395404.
    28. 28)
      • 22. Ziouva, E., Antonakopoulos, T.: ‘CSMA/ca performance under high traffic conditions: throughput and delay analysis’, Comput. Commun., 2002, 25, (3), pp. 313321 (doi: 10.1016/S0140-3664(01)00369-3).
    29. 29)
      • 5. Deng, D.-J., Ke, C.-H., Chao, H.-C., Huang, Y.-M.: ‘On delay constrained CAC scheme and scheduling policy for CBR traffic in IEEE 802.11e wireless LANs’, Wirel. Commun. Mobile Comput., 2010, 10, (11), pp. 15091520 (doi: 10.1002/wcm.840).
    30. 30)
      • 2. Perahia, E., Cordeiro, C., Park, M., Yang, L.L.: ‘IEEE 802.11ad: defining the next generation multi-Gbps Wi-Fi’. Proc. Seventh IEEE Consumer Communications and Networking Conf. (CCNC), Las Vegas, USA, January 2010, p. 15.
    31. 31)
      • 11. Zhou, W., Nandagopalan, S.S., Qiao, D.: ‘A simulation study of CSMA/CA performance in 60 GHz WPANs’. Proc. IEEE Globecom'09, Honolulu, HI, November 2009.
    32. 32)
      • 9. Mandke, K., Nettles, S.M.: ‘A dual-band architecture for multi-Gbps communication in 60 GHz multi-hop networks’. Proc. Int. Workshop on mmWave Communications from Circuits to Networks (mmCom 2010), Chicago, IL, September 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2013.0068
Loading

Related content

content/journals/10.1049/iet-net.2013.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading