access icon free Approach for channel reservation and allocation to improve quality of service in vehicular communications

Channel allocation plays an important role in next generation of wireless networks that require huge bandwidth support for various applications. It became very interesting and important research area in vehicular ad hoc network (VANET) as the channel allocation procedure needs to be efficient as the frequency of handoff is high because of the high mobility of the nodes. So, the authors propose a channel allocation algorithm that utilises channel reuse technique, channel borrowing process and the speed of the vehicle to reserve the channel for handoff calls to improve quality of service (QoS) in VANET. The calls are categorised as real-time originating calls, real-time handoff calls, non-real-time originating calls, non-real-time handoff calls and non-real-time transfer calls, and queue is maintained for non-real-time originating calls, which leads to non-real-time transfer calls. The channel borrowing process is incorporated only for real-time originating calls and real-time handoff calls. The proposed system is modelled using two-dimensional Markov model. The proposed algorithm is simulated and evaluated in terms of QoS parameters as blocking probability, dropping probability and handoff latency. The performance is tested with varying system load, varying number of channels and is compared with legacy systems like cooperative reservation of service channels, CRaSCH, and a new dynamic channel allocation strategy which combines channel reservation with new call queuing, RQS.

Inspec keywords: channel allocation; vehicular ad hoc networks; quality of service; next generation networks; wireless channels; probability

Other keywords: channel borrowing process; channel reservation; QoS; nonreal-time handoff calls; CRaSCH; wireless networks; quality of service; VANET; next generation networks; channel reuse technique; nonreal-time transfer calls; dropping probability; nonreal-time originating calls; vehicular communications; vehicular ad hoc network; blocking probability; channel allocation procedure

Subjects: Other topics in statistics; Mobile radio systems

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 27. The MOVE Simulator, 2011. http://www.csie.ncku.edu.tw/~klan/move/index.htm.
    14. 14)
      • 12. Misra, S., Venkata Krishna, P., Saritha, V.: ‘LACAV: an energy-efficient channel assignment mechanism for vehicular ad hoc networks’, J. Supercomput., 2012, 62, (3), pp. 12411262 (doi: 10.1007/s11227-011-0552-1).
    15. 15)
      • 23. Zhao, T., Lu, S., Yan, W., Li, X.: ‘A road based multi-channel assignment method for VANET’. 2013 Int. Conf. Computing, Networking and Communications (ICNC), 28–31 January 2013, pp. 6165, doi: 10.1109/ICCNC.2013.6504054.
    16. 16)
      • 17. Sgora, A., Vergados, D.: ‘Handoff prioritization and decision schemes in wireless cellular networks: a survey’, IEEE Commun. Surv. Tutor. Fourth Quarter, 2009, 11, (4), pp. 5777 (doi: 10.1109/SURV.2009.090405).
    17. 17)
      • 18. Sun, W., Fu, T., Xia, F., Qin, Z., Cong, R.: ‘A dynamic channel assignment strategy based on cross-layer design for wireless mesh networks’, Int. J. Commun. Syst., 2012, 25, pp. 11221138 (doi: 10.1002/dac.2385).
    18. 18)
      • 5. Chen, S.L., Chong, P.H.J.: ‘Dynamic channel assignment with flexible reuse partitioning in cellular systems’. Proc. IEEE Int. Conf. Communications, 20–24 June 2004, vol. 7, pp. 42754279, doi: 10.1109/ICC.2004.1313354.
    19. 19)
      • 6. Agrawal, D., Zeng, Q.-A.: ‘Introduction to wireless and mobile systems’ (Cengage Learning, Stamford, CT, 2006, 3rd edn.), 2010.
    20. 20)
      • 29. The Network Simulator NS-2, 2011. http://www.isi.edu/nsnam/ns.
    21. 21)
      • 4. Boukerche, A., Huang, T., Abrougui, K.: ‘Design and performance evaluation of a QoS-based dynamic channel allocation protocol for wireless and mobile networks’. Proc. 13th IEEE Int. Symp. Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 27–29 September 2005, pp. 445452, doi: 10.1109/MASCOTS.2005.25.
    22. 22)
      • 24. Deng, D.-J., Chen, H.-C., Chao, H.-C., Huang, Y.-M.: ‘A collision alleviation scheme for IEEE 802.11p VANETS’, Wirel. Pers. Commun., 2011, 56, (3), pp. 371383 (doi: 10.1007/s11277-010-9977-8).
    23. 23)
      • 20. Oh, E., Woo, C.: ‘Performance analysis of dynamic channel allocation based on the greedy approach for orthogonal frequency-division multiple access downlink systems’, Int. J. Commun. Syst., 2012, 25, pp. 953961 (doi: 10.1002/dac.1300).
    24. 24)
      • 8. Fiore, M., Harri, J., Filali, F., Bonnet, C.: ‘Vehicular mobility simulation for VANETs’. Proc. 40th Annual Simulation Symp., ANSS'07, 26–28 March 2007, pp. 301309, doi: 10.1109/ANSS.2007.44.
    25. 25)
      • 11. Yang, A., Tang, L., Yang, X.: ‘Application of channel reservation and preemptive priority mechanism in baton handover strategy’. Proc. Third IEEE Int. Conf. Broadband Network and Multimedia Technology (IC-BNMT), 26–28 October 2010, pp. 500504, doi: 10.1109/ICBNMT.2010.5705140.
    26. 26)
      • 15. Zhang, Y., Salari, E.: ‘A hybrid channel allocation algorithm with priority to handover calls in mobile cellular networks’, J. Comput. Commun., 2009, 32, (5), pp. 880887 (doi: 10.1016/j.comcom.2008.12.018).
    27. 27)
      • 14. Campolo, C., Cortese, A., Molinaro, A.: ‘CRaSCH: a cooperative scheme for service channel reservation in 802.11p/WAVE vehicular ad hoc networks’. Proc. Int. Conf. Ultra Modern Telecommunications & Workshops, ICUMT'09, 12–14 October 2009, pp. 18, doi: 10.1109/ICUMT.2009.5345640.
    28. 28)
      • 1. Patra, S.S.M., Roy, K., Banerjee, S., Vidyarthi, D.P.: ‘Improved genetic algorithm for channel allocation with channel borrowing in mobile computing’, IEEE Trans. Mob. Comput., 2006, 1, (7), pp. 884892, (doi: 10.1109/TMC.2006.99).
    29. 29)
      • 19. Li, Y., Ji, H., Li, X., Leung, V.C.M.: ‘Dynamic channel selection with reinforcement learning for cognitive WLAN over fiber’, Int. J. Commun. Syst., 2012, 25, pp. 10771090 (doi: 10.1002/dac.2338).
    30. 30)
      • 9. Venkata Krishna, P., Misra, S., Obaidat, M.S., Saritha, V.: ‘An efficient approach for distributed dynamic channel allocation with queues for real-time and non-real-time traffic in cellular networks’, J. Syst. Softw., 2009, 82, (7), pp. 11121124, ISSN 0164-1212, (doi: 10.1016/j.jss.2009.01.043).
    31. 31)
      • 10. Chiu, K.-L., Hwang, R.-H., Chen, Y.-S.: ‘Cross-layer design vehicle-aided handover scheme in VANETs’, Wirel. Commun. Mobile Comput., 2011, 11, (7), pp. 916928 (doi: 10.1002/wcm.861).
    32. 32)
      • 3. Boukerche, A., Huang, T., Abrougui, K., Williams, J.: ‘A fault-tolerant dynamic channel allocation protocol for cellular networks’. Proc. Int. Conf. Wireless Networks, Communications and Mobile Computing, 13–16 June 2005, vol. 1, pp. 342347, doi: 10.1109/WIRLES.2005.1549433.
    33. 33)
      • 21. Misra, S., Venkata Krishna, P., Saritha, V., Agarwal, H., Chilamkurti, N.: ‘Learning automata-based virtual backoff algorithm for efficient medium access in vehicular ad hoc networks’, J. Syst. Architect., 2013. Available online 6 May 2013, ISSN 1383-7621, 10.1016/j.sysarc.2013.04.006.
    34. 34)
      • 16. Ekpenyong, O., Hovakeemian, Y., Naik, K., Islam, M.T.: ‘Channel assignment problem: a fuzzy-based hybrid approach’. IEEE Global Telecommunications Conf. (GLOBECOM 2010), 6–10 December 2010, pp. 15, doi: 10.1109/GLOCOM.2010.5683440.
    35. 35)
      • 26. Lai, C.-F., Wang, H., Chao, H.-C., Nan, G.: ‘A network and device aware QoS approach for cloud-based mobile streaming’, IEEE Trans. Multim., 2013, 15, (4), pp. 747757 (doi: 10.1109/TMM.2013.2240270).
    36. 36)
      • 22. Park, S., Chang, Y., Khan, F., Copeland, J.A.: ‘Dynamic service-channels allocation (DSCA) in vehicular ad hoc networks’. 2013 IEEE Consumer Communications and Networking Conference (CCNC), 11–14 January 2013, pp. 351357, doi: 10.1109/CCNC.2013.6488469.
    37. 37)
      • 25. Huang, L.-F., Gao, Z.-L., Guo, D., Chao, H.-C., Park, J.H.: ‘A sensing policy based on the statistical property of licensed channel in cognitive network’, Int. J. Internet Protocol Technol., 2010, 4, (4), pp. 219229 (doi: 10.1504/IJIPT.2010.039233).
    38. 38)
      • 28. UDel Models For Simulation of Urban Mobile Wireless Networks, 2011. http://udelmodels.eecis.udel.edu/.
    39. 39)
      • 2. Tokekar, S., Purohit, N.: ‘Analysis of a new fixed channel allocation scheme for a sectorized GSM cellular network’. Proc. IFIP Int. Conf. Wireless and Optical Communications Networks, 2006, pp. 15, doi: 10.1109/WOCN.2006.1666531.
    40. 40)
      • 13. Sun, Y., Li, M., Tang, L.r.: ‘A dynamic channel allocation scheme based on handoff reserving and new call queuing’. Proc. Int. Conf. Control, Automation and Systems Engineering (CASE), 30–31 July 2011, pp. 14, doi: 10.1109/ICCASE.2011.5997577.
    41. 41)
      • 7. Chandra Rathore, N., Tomar, R.S., Verma, S., Tomar, G.S.: ‘CMAC: a cluster based MAC protocol for VANETs’. Proc. Int. Conf. Computer Information Systems and Industrial Management Applications (CISIM), 8–10 October 2010, pp. 563568, doi: 10.1109/CISIM.2010.5643514.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2013.0005
Loading

Related content

content/journals/10.1049/iet-net.2013.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading