access icon free Spectral occupancy rate of cognitive radio networks in queueing with adaptive modulation and coding over multiple-input and multiple-output transmit antenna selection/maximal ratio combining in Nakagami-m fading

Cognitive radio is successfully overlayed on the single user cross-layer design and implementation with adaptive modulation and coding (AMC) over frame-slotted transmission. The authors analyse the spectral occupancy rate of cognitive radio networks with AMC and queueing effect. They employ multiple-input and multiple-output with single transmit antenna selection and maximal ratio combining in Nakagami-m fading channel. The average spectral efficiency and packet dropping rate are also obtained. The analytical result shows that significant cognitive radio traffic can be accommodated without compromising the primary user network quality.

Inspec keywords: encoding; Nakagami channels; adaptive modulation; antenna arrays; queueing theory; MIMO communication; cognitive radio; transmitting antennas

Other keywords: adaptive modulation; queueing effect; cognitive radio networks; cognitive radio traffic; transmit antenna; adaptive coding; spectral efficiency; frame slotted transmission; Nakagami-m fading; multiple-input and multiple-output transmit antenna selection-maximal ratio; spectral occupancy rate; AMC; packet dropping rate; adaptive modulation and coding

Subjects: Antenna arrays; Radio links and equipment; Queueing theory; Codes

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 20. Yacoub, M.D., Bautista, J.E.V., Guerra de Rezende Guedes, L.: ‘On higher order statistics of the Nakagami-m distribution’, IEEE Trans. Veh. Technol., 1999, 48, (3), pp. 790794 (doi: 10.1109/25.764995).
    20. 20)
      • 21. Yacoub, M.D., da Silva, C.R.C.M., Bautista, J.E.V.: ‘Second-order statistics for diversity-combining techniques in Nakagami-fading channels’, IEEE Trans. Veh. Technol., 2001, 50, (6), pp. 14641470 (doi: 10.1109/25.966577).
    21. 21)
      • 26. Goldsmith, A.J., Chua, S.-G.: ‘Variable-rate variable-power MQAM for fading channels’, IEEE Trans. Commun., 1997, 45, (10), pp. 12181230 (doi: 10.1109/26.634685).
    22. 22)
      • 14. Chen, Z., Yuan, J., Vucetic, B.: ‘Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels’, IEEE Trans. Veh. Technol., 2005, 54, (4), pp. 13121321 (doi: 10.1109/TVT.2005.851319).
    23. 23)
      • 8. Liu, Q., Zhou, S., Giannakis, G.B.: ‘Queuing with adaptive modulation and coding over wireless links: cross-layer analysis and design’, IEEE Trans. Wirel. Commun., 2005, 4, (3), pp. 11421153 (doi: 10.1109/TWC.2005.847005).
    24. 24)
      • 13. Yang, Y., Ma, H., Aissa, S.: ‘Cross-layer combining of adaptive modulation and truncated ARQ under cognitive radio resource requirements’, IEEE Trans. Veh. Technol., 2012, 6, (9), pp. 40204030 (doi: 10.1109/TVT.2012.2214410).
    25. 25)
      • 18. Liu, Q., Zhou, S., Giannakis, G.B.: ‘Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links’, IEEE Trans. Wirel. Commun., 2004, 2, (5), pp. 17461775 (doi: 10.1109/TWC.2004.833474).
    26. 26)
      • 24. Zou, Y., Yao, Y.-D., Zheng, B.: ‘Outage probability analysis of cognitive transmissions: impact of spectrum sensing overhead’, IEEE Trans. Wirel. Commun., 2010, 9, (8), pp. 26762687 (doi: 10.1109/TWC.2010.061710.100108).
    27. 27)
      • 22. Blagojević, V., Ivaniš, P.: ‘Level crossing rate of MRC with transmit antenna selection in unequally distributed Nakagami fading channels’. Proc. Fifth European Conf. Circuits and Systems for Communications (ECCSC'10), Belgrade, Serbia, 23–25 November 2010, pp. 260263.
    28. 28)
      • 4. Chung, S.T., Goldsmith, A.J.: ‘Degrees of freedom in adaptive modulation: a unified view’, IEEE Trans. Commun., 2007, 49, (9), pp. 15611571 (doi: 10.1109/26.950343).
    29. 29)
      • 16. Haykin, S., Moher, M.: ‘Modern wireless communications’ (Pearson Prentice-Hall, 2005), p. 344.
    30. 30)
      • 3. Li, C.-S., Chao, H.-C.: ‘IPv6 auto-configuration VANET cross layer design based on IEEE 1609’, IET Netw., 2012, 1, (4), pp. 199206 (doi: 10.1049/iet-net.2012.0144).
    31. 31)
      • 5. Taki, M., Lahouti, F.: ‘Spectral efficiency optimized adaptive transmission for interfering cognitive radios’. IEEE Int. Conf. Communications, Workhsops, 2009, pp. 16.
    32. 32)
      • 12. Asghari, V., Aissa, S.: ‘Adaptive rate power transmission in spectrum-sharing systems’, IEEE Trans. Wirel. Commun., 2010, 8, (10), pp. 32723280 (doi: 10.1109/TWC.2010.090210.100291).
    33. 33)
      • 15. Chen, Z., Chi, Z., Li, Y., Vucetic, B.: ‘Error performance of maximal-ratio combining with transmit antenna selection in flat fading Nakagami-m fading channels’, IEEE Trans. Wirel. Commun., 2009, 8, (1), pp. 424431 (doi: 10.1109/T-WC.2009.080207).
    34. 34)
      • 17. David, H.A.: ‘Order statistics’ (John Wiley & Sons, 1970).
    35. 35)
      • 10. Soysal, A., Ulukus, S., Clancy, C.: ‘Channel estimation and adaptive M-QAM in cognitive radio link’. IEEE Int. Conf. Communications, 2008, pp. 40434047.
    36. 36)
      • 6. Haykin, S.: ‘Cognitive radio: brain-empowered wireless communications’, IEEE Trans. Inf. Theory, 2005, 23, (2), pp. 201220.
    37. 37)
      • 1. Chao, H.-C., Chang, C.-Y.: ‘Survey of cross-layer optimization techniques for wireless networks’, in Adibi, S., Mobasher, A., Tofighbaksh, M. (Eds.): ‘Fourth-generation wireless networks: applications and innovation’ (IGI Global, 2009, 1st edition).
    38. 38)
      • 11. Pursley, M.B., Royster, T.C.: ‘Low-complexity adaptive transmission for cognitive radios in dynamic spectrum access networks’, IEEE J. Sel. Areas Commun., 2008, 26, (1), pp. 8394 (doi: 10.1109/JSAC.2008.080108).
    39. 39)
      • 9. Marques, A.G., Wang, X., Giannakis, G.B.: ‘Optimal stochastic dual resource allocation for cognitive radios based on quantized CSI’. Int. Conf. Acoustics, Speech and Signal Processing, 2008, pp. 28012804.
    40. 40)
      • 19. Razavilar, J., Ray Liu, K.J., Marcus, S.I.: ‘Jointly optimized bit-rate/delay control policy for wireless packet networks with fading channels’, IEEE Trans. Commun., 2002, 50, (3), pp. 484494 (doi: 10.1109/26.990910).
    41. 41)
      • 2. Zhou, L., Geller, B., Wang, X., Wei, A., Zheng, B., Chao, H.-C.: ‘Multi-user video streaming over multiple heterogeneous wireless networks: a distributed, cross-layer design paradigm’, Internet Technol., 2009, 10, (1), pp. 112 (doi: 10.1145/1552291.1552295).
    42. 42)
      • 23. Wang, H.S., Moayeri, N.: ‘Finite-state Markov channel – a useful model for radio communication channel’, IEEE Trans. Veh. Technol., 1995, 44, (1), pp. 163171 (doi: 10.1109/25.350282).
    43. 43)
      • 7. Alouini, M.-S., Goldsmith, A.J.: ‘Adaptive modulation over Nakagami fading channels’, J. Wirel. Commun., 2000, 13, (1–2), pp. 119143 (doi: 10.1023/A:1008979107539).
    44. 44)
      • 25. Zou, Y., Yao, Y.-D., Zheng, B.: ‘Cognitive transmission with multiple relays in cognitive radio networks’, IEEE Trans. Wirel. Commun., 2011, 10, (2), pp. 648659 (doi: 10.1109/TWC.2010.120610.100830).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2012.0221
Loading

Related content

content/journals/10.1049/iet-net.2012.0221
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading