access icon free Synergy routing and dynamic spectrum allocation in multi-hop cognitive radio networks

To maximise spectrum efficiency and channel capacity, both unused (white) and underused (grey) spectral regions need to be exploited. The authors propose a distributed and localised algorithm for joint opportunistic routing and spectrum allocation for multi-hop cognitive radio networks, and design a synergy routing, a utility-based routing scheme that achieves synergistic cognitive radio benefits of overlay and underlay techniques and simultaneously maximises spectrum efficiency. The synergy routing opportunistically calculates the next hop according to the spectrum dynamics and residual energy of candidate relays and harvests the benefits from the cooperation of underlay and overlay spectrum. Simulation results indicate that our synergy prototype improves delay and throughput performance, while maintaining the autonomy and heterogeneity of individual underlay and overlay networks.

Inspec keywords: telecommunication network routing; cognitive radio; wireless channels; channel capacity

Other keywords: overlay spectrum; dynamic spectrum allocation; multihop cognitive radio networks; unused spectral regions; distributed algorithm; underused spectral regions; opportunistic routing; synergistic cognitive radio; localised algorithm; spectrum efficiency; synergy routing; utility-based routing scheme; channel capacity; spectrum allocation; underlay spectrum; residual energy

Subjects: Radio links and equipment; Communication network design, planning and routing

References

    1. 1)
      • 12. Salameh, H., Krunz, M., Younis, O.: ‘Throughput-oriented MAC protocol for opportunistic cognitive radio networks with statistical performance guarantees’. Technical report, University of Arizona UAECE-2007–2, 2007.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 13. Michigan Technical University: ‘Cognitive Radio Cognitive Network Simulator’. Available at http://stuweb.ee.mtu.edu/ljialian/index.htm, accessed April 2012.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 10. Yuh-Shyan, C., Ching-Hsiung, C., Ilsun, Y., Han-Chieh, C.: ‘A cross-layer protocol of spectrum mobility and handover in cognitive LTE networks’, Simul. Model. Pract. Theory, 2011, 19, (8), pp. 17231744 (doi: 10.1016/j.simpat.2010.09.007).
    12. 12)
      • 9. Min, X., Wei, Z., Kai-Kit, W.: ‘A geometric approach to improve spectrum efficiency for cognitive relay networks’, IEEE Trans. Wirel. Commun., 2010, 9, (1), pp. 268281 (doi: 10.1109/TWC.2010.01.090180).
    13. 13)
      • 8. Yongkang, L., Lin, X.C., Xuemin, S., Mark, Jon W.: ‘Exploiting heterogeneity wireless channels for opportunistic routing in dynamic spectrum access networks’. IEEE ICC, Kyoto, Japan, June 2011, pp. 15.
    14. 14)
      • 11. David, T., Pramod, V.: ‘Fundamentals of wireless communication’ (Cambridge University Press, 2005).
    15. 15)
      • 4. Vasu, C., Xue, L., Zhiqiang, W., et al: ‘Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency—part I: theoretical framework and analysis in AWGN channel’, IEEE Trans. Commun., 2009, 57, (12), pp. 37943804 (doi: 10.1109/TCOMM.2009.12.080400).
    16. 16)
      • 2. Xiaorong, Z., Lianfeng, S., Tak-shing Peter, Y.: ‘Analysis of cognitive radio spectrum access with optimal channel reservation’, IEEE Commun. Lett., 2007, 11, (4), pp. 304306 (doi: 10.1109/LCOM.2007.348282).
    17. 17)
      • 3. Bansal, G., Duval, O., Gagnon, F.: ‘Joint overlay and underlay power allocation scheme for OFDM-based cognitive radio systems’. IEEE Vehicular Technology Conf. (VTC), Ottawa, Canada, 2010, pp. 15.
    18. 18)
      • 1. Hong, X., Chen, Z., Wang, C.-X., Vorobroy, S., Thompson, J.S.: ‘Cognitive radio networks: interference cancellation and management techniques’, IEEE Veh. Technol. Mag., 2009, 4, (4), pp. 7684 (doi: 10.1109/MVT.2009.934672).
    19. 19)
      • 5. Vasu, C., Xue, L., Ruolin, Z., et al: ‘Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency—part II: analysis in fading channels’, IEEE Trans. Commun., 2010, 58, (6), pp. 18681876 (doi: 10.1109/TCOMM.2010.06.090176).
    20. 20)
      • 7. Chowdhury, K.R., Felice, M.D.: ‘SEARCH: a routing protocol for mobile cognitive radio ad hoc networks’, Comput. Commun. (Elsevier), 2009, 32, (18), pp. 19831997 (doi: 10.1016/j.comcom.2009.06.011).
    21. 21)
      • 12. Salameh, H., Krunz, M., Younis, O.: ‘Throughput-oriented MAC protocol for opportunistic cognitive radio networks with statistical performance guarantees’. Technical report, University of Arizona UAECE-2007–2, 2007.
    22. 22)
      • 13. Michigan Technical University: ‘Cognitive Radio Cognitive Network Simulator’. Available at http://stuweb.ee.mtu.edu/ljialian/index.htm, accessed April 2012.
    23. 23)
      • 14. Karp, B., Kung, H.T.: ‘GPSR: greedy perimeter stateless routing for wireless networks’. Proc. ACM MobiCom, Boston, MA, August 2000, pp. 243254.
    24. 24)
      • 6. Chao-Fang, S., Wangjiun, L., His-Lu, C.: ‘Joint routing and spectrum allocation for multi-hop cognitive radio networks with route robustness consideration’, IEEE Trans. Wirel. Commun., 2011, 10, (9), pp. 29402949 (doi: 10.1109/TWC.2011.072011.101249).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2012.0158
Loading

Related content

content/journals/10.1049/iet-net.2012.0158
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading