Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Dielectric characterisation of Fe3P nanoparticles based ester oil

The insulation as the root source of failure and ageing assessor makes it a crucial point for any power equipment design. The transformer's insulation requires an efficient dielectric fluid that acts as an ideal electrical insulant and better thermal transporter. The objective of attaining that idealism in dielectric medium leads to the addition of solvents (i.e. additive and other fluids) in the conventional medium as one of its approach. This study presents addition of new magnetic nanoparticle iron phosphide (Fe3P) in insulating oil to achieve improved dielectric strength and withstand capability of the same conventional oil. A comparative study of nanofluids with different concentrations of nanofluids based on different insulating medium (i.e. synthetic ester and natural ester) has been performed. The concentration of additives and role of surfactant positively influences the dielectric characteristics of the base oil. The increase in breakdown strength is observed with a slight concentration of Fe3P nanoparticles added in the insulating medium.

References

    1. 1)
      • 8. Herchl, F., Marton, K., Tomčo, F., et al: ‘Breakdown and partial discharges in magnetic liquids’, J. Phys. Condens. Matter, 2008, 20, (20), p. 204110.
    2. 2)
      • 2. Lv, Y., Zhou, Y., Li, C., et al: ‘Recent progress in nanofluids based on transformer oil: preparation and electrical insulation properties’, IEEE Electr. Insul. Mag., 2014, 30, (5), pp. 2332.
    3. 3)
      • 22. Yu, W., Xie, H.: ‘A review on nanofluids: preparation, stability mechanisms, and applications’, J. Nanomater., 2012, 2012, pp. 117.
    4. 4)
      • 11. Nazari, M., Rasoulifard, M.H.H., Hosseini, H.: ‘Dielectric breakdown strength of magnetic nanofluid based on insulation oil after impulse test’, J. Magn. Magn. Mater., 2016, 399, pp. 14.
    5. 5)
      • 12. Lee, J.-C., Kim, W.-Y.: ‘Experimental study on the dielectric breakdown voltage of the insulating oil mixed with magnetic nanoparticles’, Phys. Proc., 2012, 32, pp. 327334.
    6. 6)
      • 16. Hwangt, J.G., Sullivant, F.O., Zahnt, M., et al: ‘Streamer propagation in transformer oil-based nanofluids’, 2008, pp. 361366.
    7. 7)
      • 17. O'Sullivan, F.M.: ‘A model for the initiation and propagation of electrical streamers in transformer oil and transformer oil based nanofluids’. thesis (PhD), 2007, Department of Electrical Engineering Computer Science, Massachusetts Institute of Technology, p. 309.
    8. 8)
      • 1. Devendiran, D.K., Amirtham, V.A.: ‘A review on preparation, characterization, properties, and applications of nanofluids’, Renew. Sustain. Energy Rev., 2016, 60, pp. 2140.
    9. 9)
      • 14. Atiya, E.G., Mansour, D.E.A., Khattab, R.M., et al: ‘Dispersion behavior and breakdown strength of transformer oil filled with TiO2 nanoparticles’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 24632472.
    10. 10)
      • 9. Charles, S.W.: ‘Ferrofluids magnetically controllable fluids and their applications’, Ferrofluids, Magn. Control Fluids Appl., 2002, 594, (9), pp. 318.
    11. 11)
      • 4. Choi, S.U.S., Eastman, J.A.: ‘Enhancing thermal conductivity of fluids with nanoparticles’, ASME Int.Mechanical Engineering Congress and Exposition, New York, USA, 1995, pp. 99105.
    12. 12)
      • 20. Li, Y., Zhou, J., Tung, S., et al: ‘A review on development of nanofluid preparation and characterization’, Powder Technol., 2009, 196, (2), pp. 89101.
    13. 13)
      • 10. Segal, V., Rabinovich, A., Nattrass, D., et al: ‘Experimental study of magnetic colloidal fluids behavior in power transformers’, J. Magn. Magn. Mater., 2000, 215, pp. 513515.
    14. 14)
      • 6. Kopčanský, P., Kudelcika, J., Burya, P., et al: ‘Dielectric breakdown strength in magnetic fluids’, Phys. Status Solidi, 2003, 236, (2), pp. 454457.
    15. 15)
      • 5. Segal, V., Hjortsberg, A., Rabinovich, A., et al: ‘AC (60 Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles’. IEEE Int. Symp. Electrical Insulation, Arlington, VA, USA, 7–10 June 1998, pp. 619622.
    16. 16)
      • 7. Sartoratto, P.P.C., Neto, A.V.S., Lima, E.C.D., et al: ‘Preparation and electrical properties of oil-based magnetic fluids’, J. Appl. Phys., 2005, 97, (10), doi: 10.1063/1.1855617.
    17. 17)
      • 21. Timofeeva, E.V., Yu, W., France, D.M., et al: ‘Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids’, J. Appl. Phys., 2011, 109, (1), doi: 10.1063/1.3524274.
    18. 18)
      • 18. Mansour, D.E.A., Atiya, E.G., Khattab, R.M., et al: ‘Effect of titania nanoparticles on the dielectric properties of transformer oil-based nanofluids’. Conf. Electrical Insulation and Dielectric Phenomena Phenomena (CEIDP), Montreal, Canada, 2012, pp. 295298.
    19. 19)
      • 19. Contreras, J.E., Rodriguez, E.A., Taha-Tijerina, J.: ‘Nanotechnology applications for electrical transformers – a review’, Electr. Power Syst. Res., 2016, 143, pp. 573584.
    20. 20)
      • 13. Pîslaru-Danescu, L., Morega, A.M., Morega, M., et al: ‘Prototyping a ferrofluid-cooled transformer’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 12891298.
    21. 21)
      • 3. Chiesa, M., Das, S.K.: ‘Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media’, Colloids Surf. A, Physicochem. Eng. Aspects, 2009, 335, (1–3), pp. 8897.
    22. 22)
      • 15. Wang, Q., Rafiq, M., Lv, Y., et al: ‘Preparation of three types of transformer oil-based nanofluids and comparative study on the effect of nanoparticle concentrations on insulating property of transformer oil’, J. Nanotechnol., 2016, 2016, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0012
Loading

Related content

content/journals/10.1049/iet-nde.2018.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address