Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Enhancing discharged energy density and suppressing dielectric loss of poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorofluoroethylene) by a sandwiched structure

Polymer dielectrics with high energy density and low dielectric loss are highly desired due to the rapid development of electric devices. Among known polymers, poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorofluoroethylene) P(VDF-TrFE-CFE) is one of the promising materials for energy storage capacitor applications because of its high dielectric constant. Nevertheless, it suffers from high dielectric loss especially at the high electric field, which suppresses its breakdown strength and energy storage density. Herein, sandwiched structure dielectric films were fabricated by employing polymethyl methacrylate (PMMA) as the outer layer and P(VDF-TrFE-CFE) as the central layer. By modulating the thickness of the central layer, an enhanced discharged energy density of 7.03 J/cm3 is achieved at a high electric field of 480 MV/m, which is 132% more than that of P(VDF-TrFE-CFE) at its maximum electric field 300 MV/m. Meanwhile, this sandwiched structure film also retains a high discharge efficiency of 78% at 480 MV/m, which is never been seen in polyvinylidene fluoride-based polymers. Results show that PMMA acts as charge barrier and simultaneously enhance the breakdown strength and suppress the dielectric loss of P(VDF-TrFE-CFE).

References

    1. 1)
      • 20. Chu, B. J., Zhou, X., Ren, K. L., et al: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, pp. 334336.
    2. 2)
      • 26. Li, Q., Zhang, G., Liu, F., et al: ‘Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets’, Energy Environ. Sci., 2015, 8, pp. 922931.
    3. 3)
      • 33. Wang, Y., Wang, L., Yuan, Q., et al: ‘Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect’, J. Mater. Chem. A, 2017, 5, pp. 1084910855.
    4. 4)
      • 19. Zhou, X., Chu, B., Neese, B., et al: ‘Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene)copolymer’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, pp. 11331138.
    5. 5)
      • 18. Lu, S. G., Rožič, B., Zhang, Q. M., et al: ‘Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric-paraelectric transition’, Appl. Phys. Lett., 2011, 98, p. 122906-1/3.
    6. 6)
      • 3. Kan, W. H., Samson, A. J., Thangadurai, V.: ‘Trends in electrode development for next generation solid oxide fuel cells’, J. Mater. Chem. A, 2016, 4, pp. 1791317932.
    7. 7)
      • 23. Guan, F., Wang, J., Pan, J., et al: ‘Effects of polymorphism and crystallite size on dipole reorientation in poly(vinylidene fluoride) and Its random copolymers’, Macromolecules, 2010, 43, pp. 67396748.
    8. 8)
      • 13. Wang, Q., Zhu, L.: ‘Polymer nanocomposites for electrical energy storage’, J. Polym. Sci., B, Polym. Phys., 2011, 49, pp. 14211429.
    9. 9)
      • 2. Liu, Y., Zhang, A., Shen, C., et al: ‘Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries’, ACS Nano, 2017, 11, pp. 55305537.
    10. 10)
      • 1. Muralidharan, N., Brock, C. N., Cohn, A. P., et al: ‘Tunable mechanochemistry of lithium battery electrodes’, ACS Nano, 2017, 11, pp. 62436251.
    11. 11)
      • 17. Su, R., Tseng, J.-K., Lu, M.-S., et al: ‘Ferroelectric behavior in the high temperature paraelectric phase in a poly(vinylidene fluoride-co-trifluoroethylene) random copolymer’, Polymer, 2012, 53, pp. 728739.
    12. 12)
      • 12. Zhang, G., Li, Y., Tang, S., et al: ‘The role of field electron emission in polypropylene/aluminum nanodielectrics under high electric fields’, ACS Appl. Mater. Interfaces, 2017, 9, pp. 1010610119.
    13. 13)
      • 6. Li, W.-H., Ding, K., Tian, H.-R., et al: ‘Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors’, Adv. Funct. Mater., 2017, 27, p. 1702067-1/7.
    14. 14)
      • 25. Zhang, Z., Meng, Q., Chung, T. C. M.: ‘Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers’, Polymer, 2009, 50, pp. 707715.
    15. 15)
      • 21. Li, Z., Wang, Y., Cheng, Z. Y.: ‘Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer’, Appl. Phys. Lett., 2006, 88, p. 062904-1/3.
    16. 16)
      • 11. Li, Q., Chen, L., Gadinski, M. R., et al: ‘Flexible high-temperature dielectric materials from polymer nanocomposites’, Nature, 2015, 523, pp. 576579.
    17. 17)
      • 15. Starkweather, H. W., Avakian, P., Matheson, R. R., et al: ‘Ultralow temperature dielectric relaxations in polyolefins’, Macromolecules, 1992, 25, pp. 68716875.
    18. 18)
      • 16. Li, W., Meng, Q., Zheng, Y., et al: ‘Electric energy storage properties of poly(vinylidene fluoride)’, Appl. Phys. Lett., 2010, 96, p. 192905-1/3.
    19. 19)
      • 10. Li, Q., Liu, F., Yang, T., et al: ‘Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures’, Proc. Natl. Acad. Sci. USA, 2016, 113, pp. 999510000.
    20. 20)
      • 31. Baer, E., Zhu, L.: ‘50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films’, Macromolecules, 2017, 50, pp. 22392256.
    21. 21)
      • 24. Neese, B., Lu, S. G., Chu, B., et al: ‘Electrocaloric effect of the relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer’, Appl. Phys. Lett., 2009, 94, p. 042910-1/3.
    22. 22)
      • 14. Zhu, L., Wang, Q.: ‘Novel ferroelectric polymers for high energy density and low loss dielectrics’, Macromolecules, 2012, 45, pp. 29372954.
    23. 23)
      • 7. Huang, X., Jiang, P.: ‘Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications’, Adv. Mater., 2015, 27, pp. 546554.
    24. 24)
      • 5. Pan, Z., Liu, M., Yang, J., et al: ‘High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors’, Adv. Funct. Mater., 2017, 27, p. 1701122-1/9.
    25. 25)
      • 34. Wang, Y., Cui, J., Yuan, Q., et al: ‘Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites’, Adv. Mater., 2015, 27, pp. 66586663.
    26. 26)
      • 8. Wang, G., Huang, X., Jiang, P.: ‘Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires’, ACS Appl. Mater. Interfaces, 2015, 7, pp. 1801718027.
    27. 27)
      • 28. Zhao, X., Liu, W., Jiang, X., et al: ‘Exploring the relationship of dielectric relaxation behavior and discharge efficiency of P(VDF-HFP)/PMMA blends by dielectric spectroscopy’, Mater. Res. Express, 2016, 3, pp. 075304/1075304/11.
    28. 28)
      • 27. Xia, F., Cheng, Z., Xu, H., et al: ‘High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer’, Adv. Mater., 2002, 14, pp. 15741577.
    29. 29)
      • 32. Shen, Y., Shen, D., Zhang, X., et al: ‘High energy density of polymer nanocomposites at low electric field induced by modulation of topological-structure’, J. Mater. Chem. A, 2016, 4, pp. 83598365.
    30. 30)
      • 4. Li, M., Chen, K., Hua, B., et al: ‘Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells’, J. Mater. Chem. A, 2016, 4, pp. 1901919025.
    31. 31)
      • 30. Zhu, L.: ‘Exploring strategies for high dielectric constant and low loss polymer dielectrics’, J. Phys. Chem. Lett., 2014, 5, pp. 36773687.
    32. 32)
      • 29. Liu, F., Li, Q., Cui, J., et al: ‘High-energy-density dielectric polymer nanocomposites with trilayered architecture’, Adv. Funct. Mater., 2017, 27, p. 1606292-1/7.
    33. 33)
      • 9. Wang, G., Huang, X., Jiang, P.: ‘Bio-inspired fluoro-polydopamine meets barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites’, ACS Appl. Mater. Interfaces, 2017, 9, pp. 75477555.
    34. 34)
      • 22. Zhou, X., Zhao, X., Suo, Z., et al: ‘Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer’, Appl. Phys. Lett., 2009, 94, p. 162901-1/3.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0011
Loading

Related content

content/journals/10.1049/iet-nde.2018.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address