Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Polypropylene nanocomposite for power equipment: a review

Polypropylene (PP), with high breakdown strength, low dissipation and good processibility, is one of the most widely used dielectric material for power equipment, especially in power capacitors and power cables. The improvement of PP-based dielectric material can benefit the properties enhancement of power capacitors and cables, and thus to meet with the rapid development of the power system. Nanocomposite provided a promising orientation to reach the target and recent research approaches of PP nanocomposite for power equipment were reviewed in this paper. In this paper, we linked the nanofillers to the improved properties of PP nanocomposite, and categorised the research works into nanoclay/PP composites, metal oxide/PP nanocomposite, conductive particles/PP nanocomposite, and PP core–shell nanocomposites chronologically, corresponding to the enhanced thermal and mechanical property, breakdown strength property and energy storage property, respectively. Based on the achieved approaches, prospective for future research was proposed, providing a worth-considering direction for the future work.

References

    1. 1)
      • 117. El-Toni, A.M., Habila, M.A., Labis, J.P., et al: ‘Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures’, Nanoscale, 2016, 8, p. 2510.
    2. 2)
      • 104. Li, C., Adamcik, J., Mezzenga, R.: ‘Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties’, Nat. Nanotechnol., 2012, 7, p. 421.
    3. 3)
      • 15. Rana, S., Alagirusamy, R., Joshi, M.: ‘A review on carbon epoxy nanocomposites’, J. Reinf. Plast. Compos., 2009, 28, pp. 461487.
    4. 4)
      • 35. Lewis, T.J.: ‘Interfaces are the dominant feature of dielectrics at the nanometric level’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, pp. 739753.
    5. 5)
      • 82. Zha, J.-W., Cheng, Q., Yan, H.-D., et al: ‘Effect of multi-structured zinc oxide on the electrical properties of polypropylene insulating materials’, J. Phys. D, Appl. Phys., 2017, 50, p. 305301.
    6. 6)
      • 13. Calebrese, C., Le, H., Schadler, L.S., et al: ‘A review on the importance of nanocomposite processing to enhance electrical insulation’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, p. 1804.
    7. 7)
      • 36. Li, S., Min, D., Wang, W., et al: ‘Linking traps to dielectric breakdown through charge dynamics for polymer nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, pp. 27772785.
    8. 8)
      • 80. Rab, M.A., Dhara, R., Basappa, P.: ‘Role of type and content of nanoparticles on certain dielectric characteristics of polypropylene nanocomposites’, J. Nanophotonics, 2015, 9, p. 093589.
    9. 9)
      • 52. Shim, J.H., Choi, J.H., Joo, J.H., et al: ‘Influence of silicate surface modification on morphology and mechanical properties of Nylon6/clay nanocomposites’, Key Eng. Mater., 2007, 334–335, pp. 877880.
    10. 10)
      • 12. Tanaka, T.: ‘Dielectric nanocomposites with insulating properties’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, pp. 914928.
    11. 11)
      • 32. Nelson, J.K.: ‘Dielectric polymer nanocomposites’, 2010.
    12. 12)
      • 75. Virtanen, S., Ranta, H., Ahonen, S., et al: ‘Structure and dielectric breakdown strength of nano calcium carbonate/polypropylene composites’, J. Appl. Polym. Sci., 2014, 131, pp. 3950439511.
    13. 13)
      • 27. Maiti, P., And, P.H.N., Okamoto, M., et al: ‘Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites’, Macromolecules, 2002, 35, pp. 20422049.
    14. 14)
      • 109. Tjong, S.C., Liang, G.D., Bao, S.P.: ‘Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold’, Scr. Mater., 2007, 57, pp. 461464.
    15. 15)
      • 39. Zha, J.W., Wang, Y., Li, W.K., et al: ‘Electrical properties of polypropylene/styrene-ethylene-butylene-styrene block copolymer/MgO nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 14571464.
    16. 16)
      • 81. Rytoluoto, I., Lahti, K., Karttunen, M., et al: ‘Large-area dielectric breakdown performance of polymer films – part II: interdependence of filler content, processing and breakdown performance in polypropylene-silica nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, pp. 21962206.
    17. 17)
      • 76. Zou, C., Kushner, D., Zhang, S.: ‘Wide temperature polyimide/ZrO2 nanodielectric capacitor film with excellent electrical performance’, Appl. Phys. Lett., 2011, 98, pp. 082905082905-3.
    18. 18)
      • 120. Yao, M., You, S., Peng, Y.: ‘Dielectric constant and energy density of poly(vinylidene fluoride) nanocomposites filled with core-shell structured BaTiO3@Al2O3 nanoparticles’, Ceram. Int., 2016, 43, pp. 31273132.
    19. 19)
      • 96. Dang, Z.M., Wu, J.P., Xu, H.P., et al: ‘Dielectric properties of upright carbon fiber filled poly(vinylidene fluoride) composite with low percolation threshold and weak temperature dependence’, Appl. Phys. Lett., 2007, 91, pp. 072912072912-3.
    20. 20)
      • 4. Svoboda, P., Zeng, C., Wang, H., et al: ‘Morphology and mechanical properties of polypropylene/organoclay nanocomposites’, J. Appl. Polym. Sci., 2002, 85, pp. 15621570.
    21. 21)
      • 123. Virtanen, S., Ranta, H., Ahonen, S., et al: ‘Structure and dielectric breakdown strength of nano calcium carbonate/polypropylene composites’, J. Appl. Polym. Sci., 2014, 131, pp. 3950439511.
    22. 22)
      • 121. Dhara, R., Rab, M.A., Basappa, P.: ‘Evaluation of aging in nanofilled polypropylene by surface discharges’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, pp. 275287.
    23. 23)
      • 112. Xu, P., Gui, H., Hu, Y., et al: ‘Dielectric properties of polypropylene-based nanocomposites with ionic liquid-functionalized multiwalled carbon nanotubes’, J. Electron. Mater., 2014, 43, pp. 27542758.
    24. 24)
      • 87. Wang, Z., Cheng, Y., Yang, M., et al: ‘Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/polydopamine’, Compos. B, Eng., 2018, 140, pp. 8390.
    25. 25)
      • 91. Huang, X.Y., Jiang, P.K., Kim, C.U.: ‘Electrical properties of polyethylene/aluminum nanocomposites’, J. Appl. Phys., 2007, 102, p. 54.
    26. 26)
      • 31. Li, S., Yin, G., Chen, G., et al: ‘Short-term breakdown and long-term failure in nanodielectrics: a review’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, pp. 15231535.
    27. 27)
      • 84. Cheng, L., Han, K., Xu, K., et al: ‘Modular synthesis and dielectric properties of high-performance fluorinated poly(arylene ether-1,3,4-oxadiazole)s’, Polym. Chem., 2013, 4, pp. 24362439.
    28. 28)
      • 28. Cao, W., Li, Z., Sheng, G., et al: ‘Insulating property of polypropylene nanocomposites filled with nano-MgO of different concentration’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 14301437.
    29. 29)
      • 71. Li, Q., Chen, L., Gadinski, M.R., et al: ‘Flexible high-temperature dielectric materials from polymer nanocomposites’, Nature, 2015, 523, p. 576.
    30. 30)
      • 58. Mittal, V.: ‘Polymer layered silicate nanocomposites: a review’, Materials, 2009, 2, pp. 9921057.
    31. 31)
      • 124. Rytoluoto, I., Lahti, K., Karttunen, M., et al: ‘Large-area dielectric breakdown performance of polymer films - part II: interdependence of filler content, processing and breakdown performance in polypropylene-silica nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, pp. 21962206.
    32. 32)
      • 92. Macutkevic, J., Seliuta, D., Valusis, G., et al: ‘High dielectric permittivity of percolative composites based on onion-like carbon’, Appl. Phys. Lett., 2009, 95, p. 012904.
    33. 33)
      • 19. Li, S., Yin, G., Bai, S., et al: ‘A new potential barrier model in epoxy resin nanodielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, pp. 15351543.
    34. 34)
      • 74. Fredin, L.A., Li, Z., Lanagan, M.T., et al: ‘Substantial recoverable energy storage in percolative metallic aluminum-polypropylene nanocomposites’, Adv. Funct. Mater., 2013, 23, pp. 35603569.
    35. 35)
      • 57. Modesti, M., Lorenzetti, A., Bon, D., et al: ‘Thermal behaviour of compatibilised polypropylene nanocomposite: effect of processing conditions’, Polym. Degrad. Stab., 2006, 91, pp. 672680.
    36. 36)
      • 49. Xu, E., Guo, Q., Chen, L., et al: ‘Effect of the desperation of hectorite on the rheological behaviors of nylon 6 nanocomposites’, Polym. Mater. Sci. Eng., 2015, 31, pp. 6975.
    37. 37)
      • 60. Nam, P.H., Maiti, P., Okamoto, M., et al: ‘Foam processing and cellular structure of polypropylene/clay nanocomposites’, Polym. Eng. Sci., 2002, 42, pp. 19071918.
    38. 38)
      • 111. Wang, D., Zhang, X., Zha, J.W., et al: ‘Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold’, Polymer, 2013, 54, pp. 19161922.
    39. 39)
      • 72. Bulinski, A., Bamji, S.S., Abou-Dakka, M., et al: ‘Dielectric properties of polypropylene loaded with synthetic organoclay’. Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, USA, 2009, pp. 666671.
    40. 40)
      • 50. Xiong, L., Hu, X., Liu, X., et al: ‘Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility’, Polymer, 2008, 49, pp. 50645071.
    41. 41)
      • 25. Ildstad, E., Haave, T.: ‘Conduction and partial discharge activity in HVDC cable insulation of lapped polypropylene films’. IEEE Int. Conf. on Solid Dielectrics, Eindhoven, 2001, pp. 137140.
    42. 42)
      • 113. Youn, H.C., Baral, S., Fendler, J.H.: ‘Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation’, J. Phys. Chem., 1988, 92, (22), pp. 63206327.
    43. 43)
      • 69. de Vries, A. J.: ‘Structure and properties of uni- and biaxially oriented polypropylene films: part I – structural characterization’, Pure Appl. Chem., 1981, 53, pp. 10111037.
    44. 44)
      • 45. Fredin, L.A., Li, Z., Ratner, M.A., et al: ‘Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness’, Adv. Mater., 2012, 24, p. 5946.
    45. 45)
      • 86. Shen, Y., Zhang, X., Li, M., et al: ‘Polymer nanocomposite dielectrics for electrical energy storage’, Nat. Sci. Rev., 2017, 4, pp. 2325.
    46. 46)
      • 54. Lee, S.S., Kim, J.: ‘Surface modification of clay and its effect on the intercalation behavior of the polymer/clay nanocomposites’, J. Polym. Sci. B, Polym. Phys., 2004, 42, pp. 23672372.
    47. 47)
      • 48. Pavlidou, S., Papaspyrides, C.D.: ‘A review on polymer-layered silicate nanocomposites’, Prog. Polym. Sci., 2008, 33, pp. 11191198.
    48. 48)
      • 22. Murakami, Y., Nemoto, M., Okuzumi, S., et al: ‘DC conduction and electrical breakdown of MgO/LDPE nanocomposite’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, pp. 3339.
    49. 49)
      • 105. Hu, K., Kulkarni, D.D., Choi, I., et al: ‘Graphene-polymer nanocomposites for structural and functional applications’, Prog. Polym. Sci., 2014, 39, pp. 19341972.
    50. 50)
      • 114. Wang, D., Huang, M., Zha, J.W., et al: ‘Dielectric properties of polystyrene based composites filled with core-shell BaTiO3/polystyrene hybrid nanoparticles’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, pp. 14381445.
    51. 51)
      • 56. Usuki, A., Kato, M., Okada, A., et al: ‘Synthesis of polypropylene-clay hybrid’, J. Appl. Polym. Sci., 1997, 63, pp. 137138.
    52. 52)
      • 7. Nelson, J.K., Fothergill, J.C., Dissado, L.A., et al: ‘Towards an understanding of nanometric dielectrics’. 2002 Report Conf. on Electrical Insulation and Dielectric Phenomena, Mexico, 2002, pp. 295298.
    53. 53)
      • 41. Yu, C.R., Wu, D.M., Liu, Y., et al: ‘Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles’, Compos. Sci. Technol., 2011, 71, pp. 17061712.
    54. 54)
      • 44. Li, Z., Fredin, L.A., Tewari, P., et al: ‘In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites’, Chem. Mater., 2010, 22, pp. 51545164.
    55. 55)
      • 98. Dikin, D.A., Stankovich, S., Zimney, E.J., et al: ‘Preparation and characterization of graphene oxide paper’, Nature, 2007, 448, p. 457.
    56. 56)
      • 97. He, F., Lau, S., Chan, H.L., et al: ‘High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates’, Adv. Mater., 2010, 21, pp. 710715.
    57. 57)
      • 93. Stoyanov, H., Mc Carthy, D., Kollosche, M., et al: ‘Dielectric properties and electric breakdown strength of a subpercolative composite of carbon black in thermoplastic copolymer’, Appl. Phys. Lett., 2009, 94, pp. 232905232905-3.
    58. 58)
      • 10. Pallon, L.K.H., Hoang, A.T., Pourrahimi, A.M., et al: ‘The impact of MgO nanoparticle interface in ultra-insulating polyethylene nanocomposites for high voltage DC cables’, J. Mater. Chem. A, 2016, 4, pp. 85908601.
    59. 59)
      • 42. Polschikov, S.V., Nedorezova, P.M., Klyamkina, A.N., et al: ‘Composite materials of graphene nanoplatelets and polypropylene, prepared by in situ polymerization’, J. Appl. Polym. Sci., 2013, 127, pp. 904911.
    60. 60)
      • 88. Nan, C.W.: ‘Physics of inhomogeneous inorganic materials’, Prog. Mater. Sci., 1993, 37, pp. 1116.
    61. 61)
      • 34. Lewis, T.J.: ‘Interfaces: nanometric dielectrics’, J. Phys. D Appl. Phys., 2005, 38, pp. 202212.
    62. 62)
      • 108. Chen, P., Xiao, T.Y., Qian, Y.H., et al: ‘A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity’, Adv. Mater., 2013, 25, pp. 31923196.
    63. 63)
      • 37. Othman, M.H., Sulaiman, H., Bin Wahab, M.S.: ‘A review of polypropylene nanoclay nanocomposites: preparation, properties and applications’, Appl. Mech. Mater., 2014, 465–466, pp. 944948.
    64. 64)
      • 63. Bulinski, A., Bamji, S.S., Abou-Dakka, M., et al: ‘Dielectric properties of polypropylene containing synthetic and natural organoclays’. Conf. Record of the 2010 IEEE Int. Symp. on Electrical Insulation, San Diego, CA, USA, 2010, pp. 15.
    65. 65)
      • 110. Prashantha, K., Soulestin, J., Lacrampe, M.F., et al: ‘Electrical and dielectric properties of multi-walled carbon nanotube filled polypropylene nanocomposites’, Polym. Polym. Compos., 2010, 18, pp. 489494.
    66. 66)
      • 11. Tanaka, T., Montanari, G.C., Mulhaupt, R.: ‘Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, pp. 763784.
    67. 67)
      • 59. Nam, P.H., Maiti, P., Okamoto, M., et al: ‘A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites’, Polymer, 2001, 42, pp. 96339640.
    68. 68)
      • 64. Bulinski, A., Bamji, S.S., Abou-Dakka, M., et al: ‘Dielectric properties of polypropylene loaded with synthetic organoclay’. CEIDP ‘09. IEEE Conf. on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, USA, 2009, pp. 666671.
    69. 69)
      • 53. Zaarei, D., Sarabi, A.A., Sharif, F., et al: ‘Structure, properties and corrosion resistivity of polymeric nanocomposite coatings based on layered silicates’, J. Coat. Technol. Res., 2008, 5, pp. 241249.
    70. 70)
      • 23. Cao, W., Li, Z., Sheng, G., et al: ‘Insulating property of polypropylene nanocomposites filled with nano-MgO of different concentration’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 14301437.
    71. 71)
      • 17. Azeez, A.A., Rhee, K.Y., Park, S.J., et al: ‘Epoxy clay nanocomposites – processing, properties and applications: a review’, Compos. B, Eng., 2013, 45, pp. 308320.
    72. 72)
      • 70. Zhou, Y., Peng, S., Hu, J., et al: ‘Polymeric insulation materials for HVDC cables: development, challenges and future perspective’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 13081318.
    73. 73)
      • 55. Ray, S.S., Bousmina, M.: ‘Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world’, Prog. Mater. Sci., 2005, 50, pp. 9621079.
    74. 74)
      • 116. Kim, S.W., Kim, M., Lee, W.Y., et al: ‘Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions’, Cheminform, 2002, 33, pp. 76427643.
    75. 75)
      • 94. Dang, Z.M., Peng, B., Xie, D., et al: ‘High dielectric permittivity silver/polyimide composite films with excellent thermal stability’, Appl. Phys. Lett., 2008, 92, p. 284.
    76. 76)
      • 73. Zhu, L.: ‘Exploring strategies for high dielectric constant and low loss polymer dielectrics’, J. Phys. Chem. Lett., 2014, 5, pp. 36773687.
    77. 77)
      • 33. Tanaka, T., Kozako, M., Fuse, N., et al: ‘Proposal of a multi-core model for polymer nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, pp. 669681.
    78. 78)
      • 21. Li, S., Wang, W., Yu, S., et al: ‘Influence of hydrostatic pressure on dielectric properties of polyethylene/aluminum oxide nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, pp. 519528.
    79. 79)
      • 29. Masayuki, N., Fumitoshi, Y., Kikaku, T., et al: ‘Dc breakdown of polypropylene films in high-temperature region’, Electr. Eng. Jpn., 2010, 105, pp. 1117.
    80. 80)
      • 1. Kurokawa, Y., Yasuda, H., Kashiwagi, M., et al: ‘Structure and properties of a montmorillonite/polypropylene nanocomposite’, J. Mater. Sci. Lett., 1997, 16, pp. 16701672.
    81. 81)
      • 118. Gao, J., Liang, G., Zhang, B., et al: ‘Fept@CoS(2) yolk-shell nanocrystals as a potent agent to kill HeLa cells’, J. Am. Chem. Soc., 2007, 129, p. 1428.
    82. 82)
      • 106. Kashiwagi, T., Grulke, E., Hilding, J., et al: ‘Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites ⋆’, Polymer, 2004, 45, pp. 42274239.
    83. 83)
      • 3. Manias, E., Touny, A., Wu, L., et al: ‘Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties’, Chem. Mater., 2001, 13, pp. 35163523.
    84. 84)
      • 107. Lin, Y., Cui, X., Yen, C., et al: ‘Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells’, J. Phys. Chem. B, 2005, 109, pp. 1441014415.
    85. 85)
      • 101. Iijima, S.: ‘Helical microtubules of graphitic carbon’, Nature, 1991, 354, pp. 5658.
    86. 86)
      • 40. Tian, F., Zhang, J., Peng, X., et al: ‘Interface trapping effects on the charge transport characteristics of LDPE/ZnO nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 18881895.
    87. 87)
      • 26. Wu, C.L., Zhang, M.Q., Rong, M.Z., et al: ‘Tensile performance improvement of low nanoparticles filled-polypropylene composites’, Compos. Sci. Technol., 2002, 62, pp. 13271340.
    88. 88)
      • 102. Zhang, X., Yin, J., Peng, C., et al: ‘Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration’, Carbon, 2011, 49, pp. 986995.
    89. 89)
      • 18. Imai, T., Hirano, Y., Hirai, H., et al: ‘Preparation and properties of epoxy-organically modified layered silicate nanocomposites’. Conf. Record of the 2002 IEEE Int. Symp. on Electrical Insulation, Boston, 2002, pp. 379383.
    90. 90)
      • 99. Bethune, D.S., Klang, C.H., Vries, M.S.D., et al: ‘Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls’, Nature, 1993, 363, pp. 605607.
    91. 91)
      • 83. Zha, J.-W., Wang, Y., Li, W.-K., et al: ‘Electrical properties of polypropylene/styrene-ethylene-butylene-styrene block copolymer/MgO nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 14571464.
    92. 92)
      • 68. Chi, X., Yu, L., Zheng, J., et al: ‘Crystallization morphology and electrical tree resistance characteristics of montmorillonite/polypropylene composites’, Acta Materiae Compositae Sinica, 2015, 32, pp. 7684.
    93. 93)
      • 115. Zhang, L., Gao, R., Hu, P., et al: ‘Preparation and dielectric properties of polymer composites incorporated with polydopamine@AgNPs core–satellite particles’, RSC Adv., 2016, 6, pp. 3452934533.
    94. 94)
      • 119. Dubau, L., Asset, T., Chattot, R., et al: ‘Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction’, ACS Catal., 2015, 5, p. 150728121246006.
    95. 95)
      • 66. Chi, X.H., Gao, J.G., Zheng, J., et al: ‘The mechanism of electrical treeing propagation in polypropylene’, Acta Phys. Sin., 2014, 63, pp. 177701.
    96. 96)
      • 14. Reddy, C.C., Ramu, T.S.: ‘Polymer nanocomposites as insulation for HV DC cables – investigations on the thermal breakdown’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, pp. 221227.
    97. 97)
      • 9. Gunes, I.S., Cao, F., Jana, S.C.: ‘Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites’, Polymer, 2008, 49, pp. 22232234.
    98. 98)
      • 78. Dang, B., Hu, J., Zhou, Y., et al: ‘Remarkably improved electrical insulating performances of lightweight polypropylene nanocomposites with fullerene’, J. Phys. D, Appl. Phys., 2017, 50, p. 455303.
    99. 99)
      • 100. Iijima, S., Ichihashi, T.: ‘Single-shell carbon nanotubes of 1-nm diameter’, Nature, 1993, 363, pp. 603605.
    100. 100)
      • 79. Li, Z., Cao, W., Sheng, G., et al: ‘Experimental study on space charge and electrical strength of MgO nano-particles/polypropylene composite’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, pp. 18121819.
    101. 101)
      • 38. Liu, X., Wu, Q.: ‘PP/clay nanocomposites prepared by grafting-melt intercalation’, Polymer, 2001, 42, pp. 1001310019.
    102. 102)
      • 20. Wang, L., Xu, M., Feng, J., et al: ‘Study on AC breakdown property of NANO-Ag/EPOXY resin composite’. Int. Conf. on Properties and Applications of Dielectric Materials, Bali, Indonesia, 2006, pp. 163166.
    103. 103)
      • 43. Guo, N., Dibenedetto, S.A., Tewari, P., et al: ‘Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide−polyolefin nanocomposites: experiment and theory’, Chem. Mater., 2016, 22, pp. 15671578.
    104. 104)
      • 103. Compton, O.C., An, Z., Putz, K.W., et al: ‘Additive-free hydrogelation of graphene oxide by ultrasonication’, Carbon, 2012, 50, pp. 33993406.
    105. 105)
      • 61. Gilman, J.W., Jackson, C.L., Morgan, A.B., et al: ‘Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites’, Chem. Mater., 2000, 12, pp. 18661873.
    106. 106)
      • 122. Zhang, G., Brannum, D., Dong, D., et al: ‘Interfacial polarization-induced loss mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics’, Chem. Mater., 2016, 28, pp. 46464660.
    107. 107)
      • 90. Chen, Q., Du, P., Jin, L., et al: ‘Percolative conductor/polymer composite films with significant dielectric properties’, Appl. Phys. Lett., 2007, 91, p. 233.
    108. 108)
      • 8. Chen, C., Curliss, D.: ‘Processing and morphological development of montmorillonite epoxy nanocomposites’, Nanotechnology, 2003, 14, p. 643.
    109. 109)
      • 89. Dang, Z.M., Lin, Y.H., Nan, C.W.: ‘Novel ferroelectric polymer composites with high dielectric constants’, Adv. Mater., 2003, 15, pp. 16251629.
    110. 110)
      • 2. Ma, J., Qi, Z., Hu, Y.: ‘Synthesis and characterization of polypropylene/clay nanocomposites’, J. Appl. Polym. Sci., 2001, 82, pp. 36113617.
    111. 111)
      • 46. Fredin, L.A., Li, Z., Lanagan, M.T., et al: ‘Substantial recoverable energy storage in percolative metallic aluminum-polypropylene nanocomposites’, Adv. Funct. Mater., 2013, 23, pp. 35603569.
    112. 112)
      • 16. Yan, X.W., Wang, J.D., Yang, Y.R.: ‘Polyethylene/clay nanocomposite: review of the synthetic routes and material properties’, J. Mater. Sci. Eng., 2005, 23, pp. 133136.
    113. 113)
      • 62. Ray, S.S., Okamoto, M.: ‘Polymer/layered silicate nanocomposites: a review from preparation to processing’, Prog. Polym. Sci., 2003, 28, pp. 15391641.
    114. 114)
      • 85. Wen, R., Guo, J., Zhao, C., et al: ‘Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer titania’, Adv. Mater. Interfaces, 2018, 5, p. 1701088.
    115. 115)
      • 95. Panda, M., Srinivas, V., Thakur, A.K.: ‘Role of polymer matrix in large enhancement of dielectric constant in polymer-metal composites’, Appl. Phys. Lett., 2011, 99, pp. 042905042905-3.
    116. 116)
      • 65. Fuse, N., Tanaka, T., Ohki, Y.: ‘Evaluation of dielectric properties in polypropylene/clay nanocomposites’. CEIDP ‘09. IEEE Conf. on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, USA, 2009, pp. 507510.
    117. 117)
      • 47. Nelson, J. K.: ‘Dielectric polymer nanocomposites’ (Springer, Boston, MA, USA, 2010).
    118. 118)
      • 24. Takala, M., Ranta, H., Nevalainen, P., et al: ‘Dielectric properties and partial discharge endurance of polypropylene-silica nanocomposite’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, pp. 12591267.
    119. 119)
      • 77. Pan, J., Li, K., Chuayprakong, S., et al: ‘High-temperature poly(phthalazinone ether ketone) thin films for dielectric energy storage’, ACS Appl. Mater. Interfaces, 2010, 2, p. 1286.
    120. 120)
      • 30. Ameli, A., Nofar, M., Park, C.B., et al: ‘Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold’, Carbon, 2014, 71, pp. 206217.
    121. 121)
      • 5. Johnston, D. R., Markovitz, M.: ‘Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors’, ed: US, 1988.
    122. 122)
      • 51. Gul, S., Kausar, A., Muhammad, B., et al: ‘Technical relevance of epoxy/clay nanocomposite with organically modified montmorillonite: a review’, Polym.-Plast. Technol. Eng., 2016, 55, pp. 13931415.
    123. 123)
      • 67. An, X.: ‘Dynamics model for electrical tree propagation in cross-linked polyethylene cable insulation under high frequency voltage’, Acta Phys. Sin., 2008, 57, pp. 38283833.
    124. 124)
      • 6. Lewis, T.J.: ‘Nanometric dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 1994, 1, pp. 812825.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0005
Loading

Related content

content/journals/10.1049/iet-nde.2018.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address