Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Past and future on nanodielectrics

Flexible polymer-matrix nanodielectrics have recently been attracting more attention in the fields of frontier research internationally since the beginning of the 21st century. It would accelerate a technical reformation for the applications in new energies, bioscience and biomedical engineering, artificial intelligence, electronic skin, wearable electronic clothing, Internet of things, and electrical insulation. This review summarises the recent development and achievements of nanodielectrics, including space charge suppression, high energy density storage, partial discharge resistance, non-linear field grading properties, high thermal conductivity, and future applications in biomedical area. Special attention is given to two representative interface models that are the Lewis's diffusion electrical double-layer model and Tanaka's multi-core model. At last, some issues related to the technology of nanodielectrics have also been discussed.

References

    1. 1)
      • 41. Jo, J.W., Jung, J.W., Lee, J.U., et al: ‘Fabrication of highly conductive and transparent thin films from single walled carbon nanotubes using a new non-ionic surfactant via spin coating’, ACS Nano, 2010, 4, (9), pp. 53825388.
    2. 2)
      • 33. Wang, Y.F., Wang, L.X., Yuan, Q.B., et al: ‘Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect’, J. Mater. Chem. A., 2017, 5, pp. 1084910855.
    3. 3)
      • 35. Gao, J.G., Zhang, J.M., Ji, Q.Q., et al: ‘Study on breakdown and partial discharge of polyethylene/montmorillonite nanocomposites’. Proc. of Int. Symp. on Electrical Insulation, Mie, Japan, September 2008, pp. 597600.
    4. 4)
      • 60. Chhetry, A., Yoon, H., Park, J.Y.: ‘A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics’, J. Mater. Chem. C, 2017, 5, pp. 1006810076.
    5. 5)
      • 7. Nelson, J.K., Hu, J.: ‘Nanocomposite dielectrics – properties and implications’, J. Phys. D: Appl. Phys., 2005, 38, pp. 213222.
    6. 6)
      • 40. Donzel, L., Greuter, F., Christen, T.: ‘Nonlinear resistive electric field grading part 2: materials and applications’, IEEE Electr. Insul. Mag., 2011, 27, (2), pp. 1829.
    7. 7)
      • 28. Dang, Z.M., Zhou, T., Yao, S.H., et al: ‘Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity’, Adv. Mater., 2009, 21, pp. 20772082.
    8. 8)
      • 19. Tanaka, T., Kozako, M., Fuse, N., et al: ‘Proposal of a multi-core model for polymer nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 669681.
    9. 9)
      • 13. Jiang, Y., Liu, Y.J., Min, P., et al: ‘BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductives’, Compos. Sci. Technol., 2017, 144, pp. 6369.
    10. 10)
      • 71. Du, C.Y., Li, M., Cao, M., et al: ‘Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube’, Carbon, 2018, 126, pp. 197207.
    11. 11)
      • 66. Eksik, O., Bartolucci, S.F., Gupta, T., et al: ‘A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives’, Carbon, 2016, 101, pp. 239244.
    12. 12)
      • 24. Wang, S.J., Zha, J.W., Wu, Y.H., et al: ‘Preparation, microstructure and properties of polyethylene/alumina nanocomposites for HVDC insulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (6), pp. 33503356.
    13. 13)
      • 61. Wang, Z.B., Lizuka, T., Kozako, M., et al: ‘Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength part 1 sample preparations and thermal conductivity’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (6), pp. 19631972.
    14. 14)
      • 36. Tanaka, T., Bulinski, A., Castellon, J., et al: ‘Dielectric properties of XLPE/SiO2 nanocomposites based on CIGRE WG D1.24 cooperative test result’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (5), pp. 14841517.
    15. 15)
      • 42. Wang, Z.P., Nelson, J.K., Hillborg, H., et al: ‘Graphene oxide filled nanocomposite with novel electrical and dielectric properties’, Adv. Mater., 2012, 24, pp. 31343137.
    16. 16)
      • 48. Kozako, M., Okazaki, Y., Hikita, M., et al: ‘Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity’. Int. Conf. on Solid Dielectrics, Potsdam, Germany, July 2010, pp. 14.
    17. 17)
      • 29. Dang, Z.M., Lin, Y.H., Nan, C.W.: ‘Novel ferroelectric polymer composites with high dielectric constants’, Adv. Mater., 2003, 15, (19), pp. 16251629.
    18. 18)
      • 14. Smith, R.C., Liang, C., Landry, M., et al: ‘The mechanisms leading to the useful electrical properties of polymer nanodielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 187195.
    19. 19)
      • 2. Tanaka, T., Montanari, G.C., Mulhaupt, R.: ‘Polymer nanocomposites as dielectrics and electrical insulation – perspectives for processing technologies, material characterization and future applications’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 763784.
    20. 20)
      • 20. Lei, Q.Q.: ‘Review, discussion and strategies for the theory of engineering dielectrics (in Chinese)’. Proc. of the 11th National Conf. on Engineering Dielectric, Shanghai, China, November 2007, pp. 14.
    21. 21)
      • 56. Liu, L., Zhang, C., Luo, M., et al: ‘A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers’, Smart Mater. Struct., 2017, 26, p. 085018.
    22. 22)
      • 37. Kozako, M., Fuse, N., Ohki, Y., et al: ‘Surface degradation of polyamide nanocomposites caused by partial discharges using IEC(b) electrodes’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 833839.
    23. 23)
      • 15. Green, C., Vaughan, A.: ‘Nanodielectrics-how much do we really understand?’, IEEE Electr. Insul. Mag., 2008, 24, (4), pp. 616.
    24. 24)
      • 70. Guo, Y.H., Batra, S., Chen, Y.W., et al: ‘Roll to roll field “Z” alignment of nanoparticles from polymer solutions for manufacturing multifunctional capacitor films’, ACS Appl. Mater. Interfaces, 2016, 8, pp. 1847118480.
    25. 25)
      • 58. Kwak, J.W., Chi, H.J., Jung, K.M., et al: ‘A face robot actuated with artificial muscle based on dielectric elastomer’, J. Mech. Sci. Technol., 2005, 19, (2), pp. 578588.
    26. 26)
      • 38. Pradhan, M., Greijer, H., Eriksson, G., et al: ‘Functional behaviors of electric field grading composite materials’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 768778.
    27. 27)
      • 31. Dang, Z.M., Zheng, M.S., Zha, J.W.: ‘1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications’, Small, 2016, 12, (13), pp. 114.
    28. 28)
      • 17. Lewis, T.J.: ‘Interfaces: nanometric dielctrics’, J. Phys. D: Appl. Phys., 2005, 38, pp. 202212.
    29. 29)
      • 52. Seyhan, A.T., Goncu, Y., Durukan, O., et al: ‘Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites’, J. Solid. State. Chem., 2017, 249, pp. 98107.
    30. 30)
      • 8. Arakane, T., Motchizuki, T., Adachi, N., et al: ‘Space charge accumulation properties in XLPE with carbon nano-filler’. IEEE Int. Conf. on Condition Monitoring and Diagnosis, Bali, Indonesia, September 2012, pp. 328331.
    31. 31)
      • 54. Sun, J.J., Yao, Y.M., Zeng, X.L., et al: ‘Preparation of boron nitride nanosheet/nanofibrillated cellulose nanocomposites with ultrahigh thermal conductivity via engineering interfacial thermal resistance’, Adv. Mater. Interfaces, 2017, 4, p. 1700563.
    32. 32)
      • 69. Tang, H.X., Lin, Y.R., Sodano, H.A.: ‘Enhanced energy storage in nanocomposites capacitors through aligned PZT nanowires by uniaxial strain assembly’, Adv. Energy Mater., 2012, 2, pp. 469476.
    33. 33)
      • 16. Lewis, T.J.: ‘Interfaces are the dominant feature of dielectrics at the nanometric level’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 739753.
    34. 34)
      • 65. Wang, J.C., Long, Y.C., Sun, Y., et al: ‘Enhanced energy density and thermostability in polyimide nanocomposites containing core-shell structured BaTiO3@SiO2 nanofibers’, Appl. Surf. Sci., 2017, 426, pp. 437445.
    35. 35)
      • 53. Zhang, X.M., Zhang, J.J., Zhang, X.L., et al: ‘Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC’, Compos. Sci. Technol., 2017, 150, pp. 217226.
    36. 36)
      • 32. Yang, K., Huang, X.Y., He, J.L., et al: ‘Strawberry-like core-shell Ag@polydopamine@BaTiO3 hybrid nanoparticles for high-k polymer nanocomposites with high energy density and low dielectric loss’, Adv. Mater., 2015, 2, p. 1500361.
    37. 37)
      • 63. Zhang, L., Zhou, Y.X., Huang, M., et al: ‘Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 424433.
    38. 38)
      • 39. Onneby, C., Martensson, E., Gafvert, U., et al: ‘Electrical properties of field grading materials influenced by the silicon carbide grain size’. IEEE 7th Int. Conf. on Solid Dielectrics, Eindhoven, Netherlands, June 2001, pp. 4345.
    39. 39)
      • 64. Li, Y.H., Yuan, J.J., Xue, J., et al: ‘Towards suppressing loss tangent: effect of polydopamine coating layers on dielectric properties of core-shell barium titanate filled polyvinylidene fluoride composites’, Compos. Sci. Technol., 2015, 18, pp. 198206.
    40. 40)
      • 55. Hong, H.J., Kwan, S.M., Lee, D.S., et al: ‘Highly flexible and stretchable thermally conductive composite film by polyurethane supported 3D networks for boron nitride’, Compos. Sci. Technol., 2017, 152, pp. 94100.
    41. 41)
      • 51. Wu, K., Li, Y.W., Huang, R., et al: ‘Constructing conductive multi-walled carbon nanotubes network inside hexagonal boron nitride network in polymer composites for significantly improved dielectric property and thermal conductivity’, Compos. Sci. Technol., 2017, 151, pp. 193201.
    42. 42)
      • 43. Cherney, E.A.: ‘Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (6), pp. 11081115.
    43. 43)
      • 72. Wang, P., Chong, H.D., Zhang, J.J., et al: ‘Constructing 2D graphene networks in polymer composites for significantly improved electrical and mechanical properties’, ACS Appl. Mater. Interfaces, 2017, 9, pp. 2200622017.
    44. 44)
      • 5. Zakrevskii, V.A., Sudar, N.T., Zaopo, A., et al: ‘Mechanism of electrical degradation and breakdown of insulating polymers’, J. Appl. Phys., 2003, 93, (4), pp. 21352139.
    45. 45)
      • 4. Shen, Y., Lin, Y.H., Nan, C.W.: ‘Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles’, Adv. Funct. Mater., 2007, 17, pp. 24052410.
    46. 46)
      • 30. Xu, H.P., Dang, Z.M.: ‘Electrical property and microstructure analysis of poly(vinylidene fluoride)-based composites with different conducting fillers’, Chem. Phys. Lett., 2007, 438, pp. 196202.
    47. 47)
      • 62. Ma, D.L., Hugener, T.A., Siegel, R.W., et al: ‘Influence of nanoparticle surface modification on the electrical behavior of polyethylene nanocomposites’, Nanotechnology, 2005, 16, pp. 724731.
    48. 48)
      • 73. Hu, J.T., Huang, Y., Yao, Y.M., et al: ‘Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN’, ACS Appl. Mater. Interfaces, 2017, 9, pp. 1354413553.
    49. 49)
      • 12. Christen, T., Donzel, L., Greuter, F.: ‘Nonlinear resistive electric field grading part 1: theory and simulation’, IEEE Electr. Insul. Mag., 2010, 26, (6), pp. 4759.
    50. 50)
      • 57. Wang, Y., Sun, L.Z.: ‘Development of dielectric elastomer nanocomposites as stretchable actuating materials’, Appl. Phys. Lett., 2017, 111, p. 161904.
    51. 51)
      • 46. Jiang, P.K., Chen, J., Huang, X.Y.: ‘Research status of thermally conductive but electrically insulating polymer nanocomposites (in Chinese)’, High Voltage Eng., 2017, 43, (9), pp. 27912799.
    52. 52)
      • 26. Barber, P., Balasubramanian, S., Anguchamy, Y., et al: ‘Polymer composite and nanocomposite dielectric materials for pulse power energy storage’, Materials, 2009, 2, pp. 16971733.
    53. 53)
      • 18. Lewis, T.J.: ‘Nano-composite dielectrics: the dielectric nature of the nano-particle environment’, IEEJ Trans. Fundam. Mater., 2006, 126, (11), pp. 10201030.
    54. 54)
      • 49. Sun, R.H., Yao, H., Zhang, H.B., et al: ‘Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites’, Compos. Sci. Technol., 2016, 137, pp. 1623.
    55. 55)
      • 27. Dang, Z.M., Zheng, M.S., Hu, P.H., et al: ‘Dielectric polymer materials for electrical energy storage and dielectric physics: a guide’, J. Adv. Phys., 2015, 4, (4), pp. 302313.
    56. 56)
      • 22. Chen, G., Li, S.T., Zhong, L.S.: ‘Space charge in nanodielectrics and its impact on electrical performance’. IEEE 11th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, NSW, Australia, July 2015, pp. 3639.
    57. 57)
      • 25. Zhou, Y., Hu, J., Dang, B., et al: ‘Effect of different nanoparticles on tuning electrical properties of polypropylene nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 13801389.
    58. 58)
      • 21. Zhang, L., Khani, M.M., Krentz, T.M., et al: ‘Suppression of space charge in crosslinked polyethylene filled with poly(stearyl methacrylate)-grafted SiO2 nanoparticles’, Appl. Phys. Lett., 2017, 110, p. 130903.
    59. 59)
      • 68. Liu, F.H., Li, Q., Cui, J., et al: ‘High-energy-density dielectric polymer nanocomposites with trilayered architecture’, Adv. Funct. Mater., 2017, 27, p. 1606292.
    60. 60)
      • 23. Zhang, L., Zhou, Y.X., Tian, J.H., et al: ‘Experiment and simulation of space charge suppression in LDPE/MgO nanocomposite under external DC electric field’, J. Electrostat., 2014, 72, pp. 252260.
    61. 61)
      • 45. Balberg, I., Azula, D., Toker, D., et al: ‘Percolation and tunneling in composite materials’, Int. J. Mod. Phys. B, 2004, 18, (5), pp. 20912121.
    62. 62)
      • 67. Kim, D.S., Baek, C.Y., Ma, H.J., et al: ‘Enhanced dielectric permittivity of BaTiO3/epoxy resin composites by particle alignment’, Ceram. Int., 2016, 43, pp. 71417147.
    63. 63)
      • 1. Lewis, T.J.: ‘Nanometric dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 1994, 1, (5), pp. 812824.
    64. 64)
      • 44. Momen, G., Farzaneh, M.: ‘Survey of micro/nano filler use to improve silicone rubber for outdoor insulators’, Rev. Adv. Mater. Sci., 2011, 27, pp. 113.
    65. 65)
      • 9. Dang, Z.M., Yuan, J.K, Zha, J.W., et al: ‘Fundamental, processes and applications of high-permittivity polymer-matrix composites’, Prog. Mater Sci., 2012, 57, pp. 660723.
    66. 66)
      • 50. Wu, Z.J., Gao, S., Chen, L., et al: ‘Electrically insulated epoxy nanocomposites reinforced with synergistic core-shell SiO2@MWCNTs and montmorillonite bifillers’, Macromol. Chem. Phys., 2017, 218, p. 1700357.
    67. 67)
      • 59. Yoon, S.G., Chang, S.T.: ‘Microfluidic capacitive sensors with ionic liquid electrodes and CNT/PDMS nanocomposites for simultaneous sensing of pressure and temperature’, J. Mater. Chem. C, 2017, 5, pp. 19101919.
    68. 68)
      • 3. Frechette, M.F., Reed, C.W., Sedding, H.: ‘Process, understanding and challenges in the field of nanodielectrics’, IEEJ Trans. Fundam. Mater., 2006, 126, (11), pp. 10311043.
    69. 69)
      • 11. Izzati, W.A., Arief, Y.Z., Adzis, Z., et al: ‘Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications and future trends’, Sci. World J., 2014, 2014, pp. 114.
    70. 70)
      • 74. Fan, B.H., Zha, J.W., Wang, D.R., et al: ‘Size-dependent low-frequency dielectric properties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films’, Appl. Phys. Lett., 2012, 100, p. 012903.
    71. 71)
      • 47. Wu, K., Fang, J.C., Ma, J.R., et al: ‘Achieving a collapsible, strong, and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber’, ACS Appl. Mater. Interfaces, 2017, 9, pp. 2003530045.
    72. 72)
      • 10. Chen, Q., Shen, Y., Zhang, S.H., et al: ‘Polymer-based dielectrics with high energy storage density’, Annu. Rev. Mater. Res., 2015, 45, pp. 433458.
    73. 73)
      • 6. Chu, B.J., Zhou, X., Ren, K.L., et al: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, (5685), pp. 334336.
    74. 74)
      • 34. Luo, S.B., Shen, Y.B., Yu, S.H., et al: ‘Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites’, Energy Environ. Sci., 2017, 10, pp. 137144.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0004
Loading

Related content

content/journals/10.1049/iet-nde.2018.0004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address