Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Design, synthesis and processing of PVDF-based dielectric polymers

Due to the appealing piezoelectric, pyroelectric, and ferroelectric (FE) properties, poly(vinylidene fluoride) (PVDF)-based dielectric polymers have been attracting great attention from both the academic and industrial communities. Depending on the molecular structure and the processing method, PVDF-based dielectric polymers can exhibit rich dielectric polarisation behaviours covering normal FE, relaxor FE, anti-FE-like and linear dielectric responses, which enables a wide spectrum of application fields such as non-volatile memories, piezoelectric and pyroelectric sensors, actuators, electrocaloric refrigeration, and film capacitors. In this study, the authors first briefly introduce the current practical/promising applications of PVDF-based dielectric polymers, and the corresponding optimum dielectric polarisation behaviour and crystal structure are proposed accordingly. The chemical synthesis and modification strategies for obtaining various fluoropolymers beyond PVDF homopolymer are then summarised with an emphasis on the relationship between the molecular structure and the dielectric polarisation behaviour. In addition, the effect of processing methods on the crystal structure and dielectric properties of the PVDF-based polymers is discussed. Finally, some newly developed processing techniques applicable to PVDF-based polymers are described.

References

    1. 1)
      • 39. Navid, A., Lynch, C.S., Pilon, L.: ‘Purified and porous poly (vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting’, Smart Mater. Struct., 2010, 19, (5), p. 055006.
    2. 2)
      • 58. Bao, H.M., Jia, C.L., Wang, C.C., et al: ‘A type of poly (vinylidene fluoride-trifluoroethylene) copolymer exhibiting ferroelectric relaxor behavior at high temperature (∼100°C)’, Appl. Phys. Lett., 2008, 92, (4), p. 042903.
    3. 3)
      • 104. Yang, D., Chen, Y.: ‘β-phase formation of poly (vinylidene fluoride) from the melt induced by quenching’, J. Mater. Sci. Lett., 1987, 6, (5), pp. 599603.
    4. 4)
      • 150. Li, Q., Zhang, G., Liu, F., et al: ‘Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets’, Energy Environ. Sci., 2015, 8, p. 922.
    5. 5)
      • 60. Yagi, T., Tatemoto, M., Sako, J.: ‘Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers’, Polym. J., 1980, 12, (4), pp. 209223.
    6. 6)
      • 17. Gong, H., Miao, B., Zhang, X., et al: ‘High-field antiferroelectric-like behavior in uniaxially stretched poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-grafted-poly (methyl methacrylate) films with high energy density’, RSC Adv., 2016, 6, (2), pp. 15891599.
    7. 7)
      • 139. Zheng, R.K., Yang, Y., Wang, Y., et al: ‘A simple and convenient route to prepare poly (vinylidene fluoride trifluoroethylene) copolymer nanowires and nanotubes’, Chem. Commun., 2005, (11), pp. 14471449.
    8. 8)
      • 142. Nan, C.W., Shen, Y., Ma, J.: ‘Physical Properties of Composites Near Percolation’, Annu. Rev. Mater. Res., 2010, 40, p. 131.
    9. 9)
      • 111. Jung, H.J., Chang, J., Park, Y.J., et al: ‘Shear-induced ordering of ferroelectric crystals in spin-coated thin poly (vinylidene fluoride-co-trifluoroethylene) films’, Macromolecules, 2009, 42, (12), pp. 41484154.
    10. 10)
      • 153. Li, Q., Zhang, G., Zhang, X., et al: ‘Relaxor Ferroelectric-Based Electrocaloric Polymer Nanocomposites with a Broad Operating Temperature Range and High Cooling Energy’, Adv. Mater., 2015, 27, p. 2236.
    11. 11)
      • 108. Gregorio, JrR., Cestari, M.: ‘Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride)’, J. Polym. Sci. B, Polym. Phys., 1994, 32, (5), pp. 859870.
    12. 12)
      • 115. Wahid, M., Hafiz, M., Dahan, R.M., et al: ‘Effect of annealing temperature on the crystallinity, morphology and ferroelectric of polyvinylidenefluoride-trifluoroethylene (PVDF-TrFE) thin film’, Adv. Mater. Res. Trans Tech Publications, 2013, 812, pp. 6065.
    13. 13)
      • 79. Ameduri, B., Alaaeddine, A.: ‘Copolymers containing vinylidene fluoride and trifluoroethylene’. WO2014162080, Arkema, France, 2014.
    14. 14)
      • 106. Salimi, A., Yousefi, A.A.: ‘Conformational changes and phase transformation mechanisms in PVDF solution–cast films’, J. Polym. Sci. B, Polym. Phys., 2004, 42, (18), pp. 34873495.
    15. 15)
      • 140. Hu, Z., Muls, B., Gence, L., et al: ‘High-throughput fabrication of organic nanowire devices with preferential internal alignment and improved performance’, Nano Lett., 2007, 7, (12), pp. 36393644.
    16. 16)
      • 23. Bune, A.V., Fridkin, V.M., Ducharme, S., et al: ‘Two-dimensional ferroelectric films’, Nature, 1998, 391, (6670), pp. 874877.
    17. 17)
      • 16. Li, J., Tan, S., Ding, S., et al: ‘High-field antiferroelectric behaviour and minimized energy loss in poly (vinylidene-co-trifluoroethylene)-graft-poly (ethyl methacrylate) for energy storage application’, J. Mater. Chem., 2012, 22, (44), pp. 2346823476.
    18. 18)
      • 48. Lando, J.B., Doll, W.W.: ‘The polymorphism of poly (vinylidene fluoride). I. The effect of head-to-head structure’, J. Macromol. Sci. B, Phys., 1968, 2, (2), pp. 205218.
    19. 19)
      • 92. Casalini, R., Roland, C.M.: ‘Highly electrostrictive poly (vinylidene fluoride–trifluoroethylene) networks’, Appl. Phys. Lett., 2001, 79, (16), pp. 26272629.
    20. 20)
      • 49. Liepins, R., Surles, J.R., Morosoff, N., et al: ‘Poly (vinylidene fluoride) with low content of head-to-head chain imperfections’, J. Polym. Sci. A, Polym. Chem., 1978, 16, (11), pp. 30393044.
    21. 21)
      • 152. Zhang, G., Li, Q., Gu, H., et al: ‘Ferroelectric Polymer Nanocomposites for Room-Temperature Electrocaloric Refrigeration’, Adv. Mater., 2015, 27, p. 1450.
    22. 22)
      • 82. Yang, Y., Shi, Z., Holdcroft, S.: ‘Synthesis of poly [arylene ether sulfone-b-vinylidene fluoride] block copolymers’, Eur. Polym. J., 2004, 40, (3), pp. 531541.
    23. 23)
      • 43. Alpay, S.P., Mantese, J., Trolier-McKinstry, S., et al: ‘Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion’, MRS Bull., 2014, 39, (12), pp. 10991111.
    24. 24)
      • 83. Voet, V.S.D., Brinke, G., Loos, K.: ‘Well-defined copolymers based on poly (vinylidene fluoride): from preparation and phase separation to application’, J. Polym. Sci. A, Polym. Chem., 2014, 52, (20), pp. 28612877.
    25. 25)
      • 89. Yang, L., Allahyarov, E., Guan, F., et al: ‘Crystal orientation and temperature effects on double hysteresis loop behavior in a poly (vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer’, Macromolecules, 2013, 46, (24), pp. 96989711.
    26. 26)
      • 19. Jones, R.E., Maniar, P.D., Moazzami, R., et al: ‘Ferroelectric non-volatile memories for low-voltage, low-power applications’, Thin Solid Films, 1995, 270, (1–2), pp. 584588.
    27. 27)
      • 112. Yang, J.H., Ryu, T., Lansac, Y., et al: ‘Shear stress-induced enhancement of the piezoelectric properties of PVDF-TrFE thin films’, Org. Electron., 2016, 28, pp. 6772.
    28. 28)
      • 28. Li, C., Wu, P.M., Lee, S., et al: ‘Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer’, J. Microelectromech. Syst., 2008, 17, (2), pp. 334341.
    29. 29)
      • 66. Gadinski, M.R., Chanthad, C., Han, K., et al: ‘Synthesis of poly (vinylidene fluoride-co-bromotrifluoroethylene) and effects of molecular defects on microstructure and dielectric properties’, Polym. Chem., 2014, 5, (20), pp. 59575966.
    30. 30)
      • 61. Li, Z., Wang, Y., Cheng, Z.Y.: ‘Electromechanical properties of poly (vinylidene-fluoride-chlorotrifluoroethylene) copolymer’, Appl. Phys. Lett., 2006, 88, (6), p. 062904.
    31. 31)
      • 35. Bauer, F., Fousson, E., Zhang, Q.M.: ‘Recent advances in highly electrostrictive P(VDF-TrFE-CFE) terpolymers’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (5), pp. 11491154.
    32. 32)
      • 22. Li, M., Wondergem, H.J., Spijkman, M.J., et al: ‘Revisiting the δ-phase of poly (vinylidene fluoride) for solution-processed ferroelectric thin films’, Nature Mater., 2013, 12, (5), pp. 433438.
    33. 33)
      • 102. Doll, W.W., Lando, J.B.: ‘The polymorphism of poly (vinylidene fluoride) IV. The structure of high-pressure-crystallized poly (vinylidene fluoride)’, J. Macromol. Sci. B, 1970, 4, (4), pp. 889896.
    34. 34)
      • 147. Li, J., Seok, S.I., Chu, B., et al: ‘Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density’, Adv. Mater., 2009, 21, p. 217.
    35. 35)
      • 45. Davis, G.T., McKinney, J.E., Broadhurst, M.G., et al: ‘Electric-field-induced phase changes in poly (vinylidene fluoride)’, J. Appl. Phys., 1978, 49, (10), pp. 49985002.
    36. 36)
      • 131. Mackey, M., Hiltner, A., Baer, E., et al: ‘Enhanced breakdown strength of multilayered films fabricated by forced assembly microlayer coextrusion’, J. Phys. D, Appl. Phys., 2009, 42, (17), p. 175304.
    37. 37)
      • 57. Furukawa, T.: ‘Structure and functional properties of ferroelectric polymers’, Adv. Colloid Interface Sci., 1997, 71, pp. 183208.
    38. 38)
      • 118. Li, W., Zhu, Y., Hua, D., et al: ‘Crystalline morphologies of P (VDF-TrFE)(70/30) copolymer films above melting point’, Appl. Surf. Sci., 2008, 254, (22), pp. 73217325.
    39. 39)
      • 74. Gadinski, M.R., Li, Q., Zhang, G., et al: ‘Understanding of relaxor ferroelectric behavior of poly (vinylidene fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymers’, Macromolecules, 2015, 48, (8), pp. 27312739.
    40. 40)
      • 54. Brinati, G., Marrani, A., Goffaux, B.: ‘Vinylidene fluoride and trifluoroethylene containing polymers’. WO 2009147030A1, Solvay Solexis S.P.A., Italy, 2009.
    41. 41)
      • 137. García-Gutiérrez, M.C., Linares, A., Hernández, J.J., et al: ‘Confinement-induced one-dimensional ferroelectric polymer arrays’, Nano Lett., 2010, 10, (4), pp. 14721476.
    42. 42)
      • 123. Tan, S., Hu, X., Ding, S., et al: ‘Significantly improving dielectric and energy storage properties via uniaxially stretching crosslinked P (VDF-co-TrFE) films’, J. Mater. Chem. A, 2013, 1, (35), pp. 1035310361.
    43. 43)
      • 21. Correia, H.M.G., Ramos, M.M.D.: ‘Quantum modelling of poly (vinylidene fluoride)’, Comput. Mater. Sci., 2005, 33, (1), pp. 224229.
    44. 44)
      • 105. Gradys, A., Sajkiewicz, P., Adamovsky, S., et al: ‘Crystallization of poly (vinylidene fluoride) during ultra-fast cooling’, Thermochimica Acta, 2007, 461, (1), pp. 153157.
    45. 45)
      • 126. Ribeiro, C., Sencadas, V., Ribelles, J.L.G., et al: ‘Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes’, Soft Mater., 2010, 8, (3), pp. 274287.
    46. 46)
      • 146. Kim, P., Jones, S.C., Hotchkiss, P.J., et al: ‘Phosphonic Acid-Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength’, Adv. Mater., 2007, 19, p. 1001.
    47. 47)
      • 34. Brown, L.F., Mason, J.L.: ‘Disposable PVDF ultrasonic transducers for nondestructive testing applications’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1996, 43, (4), pp. 560568.
    48. 48)
      • 84. Destarac, M., Matyjaszewski, K., Silverman, E., et al: ‘Atom transfer radical polymerization initiated with vinylidene fluoride telomers’, Macromolecules, 2000, 33, (13), pp. 46134615.
    49. 49)
      • 59. Zhu, L.: ‘Exploring strategies for high dielectric constant and low loss polymer dielectrics’, J. Phys. Chem. Lett., 2014, 5, (21), pp. 36773687.
    50. 50)
      • 41. Li, X., Lu, S.G., Chen, X.Z., et al: ‘Pyroelectric and electrocaloric materials’, J. Mater. Chem. C, 2013, 1, (1), pp. 2337.
    51. 51)
      • 122. Liu, Q., Capsal, J.F., Richard, C.: ‘Influence of crystal orientation on electromechanical behaviors of relaxor ferroelectric P (VDF-TrFE-CTFE) terpolymer’, World Academy of Sci., Eng. Technol., Int. J. Chem., Mol. Nuclear, Mater. Metallurg. Eng., 2015, 9, (12), pp. 14891498.
    52. 52)
      • 20. Naber, R.C.G., Asadi, K., Blom, P.W.M., et al: ‘Organic nonvolatile memory devices based on ferroelectricity’, Adv. Mater., 2010, 22, (9), pp. 933945.
    53. 53)
      • 76. Soulestin, T., Ladmiral, V., Lannuzel, T., et al: ‘Importance of microstructure control for designing new electroactive terpolymers based on vinylidene fluoride and trifluoroethylene’, Macromolecules, 2015, 48, (21), pp. 78617871.
    54. 54)
      • 5. Kepler, R.G., Anderson, R.A.: ‘Ferroelectricity in polyvinylidene fluoride’, J. Appl. Phys., 1978, 49, (3), pp. 12321235.
    55. 55)
      • 12. Zhang, Q.M., Bharti, V., Zhao, X.: ‘Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer’, Science, 1998, 280, (5372), pp. 21012104.
    56. 56)
      • 87. Guan, F., Yuan, Z., Shu, E.W., et al: ‘Fast discharge speed in poly (vinylidene fluoride) graft copolymer dielectric films achieved by confined ferroelectricity’, Appl. Phys. Lett., 2009, 94, (5), p. 052907.
    57. 57)
      • 91. Xu, H., Shanthi, G., Bharti, V., et al: ‘Structural, conformational, and polarization changes of poly (vinylidene fluoride–trifluoroethylene) copolymer induced by high-energy electron irradiation’, Macromolecules, 2000, 33, (11), pp. 41254131.
    58. 58)
      • 56. Wang, Z., Zhang, Z., Chung, T.C. M.: ‘High dielectric VDF/TrFE/CTFE terpolymers prepared by hydrogenation of VDF/CTFE copolymers: synthesis and characterization’, Macromolecules, 2006, 39, (13), pp. 42684271.
    59. 59)
      • 114. Lee, J.S., Prabu, A.A., Kim, K.J.: ‘Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P (VDF-TrFE) film for nonvolatile polymer memory device’, Polymer, 2010, 51, (26), pp. 63196333.
    60. 60)
      • 99. Chen, Y.X., Cheng, Z.X., Shen, Q.D.: ‘Regulation of energy storage capacitance and efficiency in semi-crystalline vinylidene fluoride copolymers through cross-linking method’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 682688.
    61. 61)
      • 96. Tillet, G., Boutevin, B., Ameduri, B.: ‘Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature’, Prog. Polym. Sci., 2011, 36, (2), pp. 191217.
    62. 62)
      • 32. Brochu, P., Pei, Q.: ‘Advances in dielectric elastomers for actuators and artificial muscles’, Macromol. Rapid Commun., 2010, 31, (1), pp. 1036.
    63. 63)
      • 110. Meng, N., Mao, R., Tu, W., et al: ‘Processing and characterization of free standing highly oriented ferroelectric polymer films with remarkably low coercive field and high remnant polarization’, Polymer, 2016, 100, pp. 6976.
    64. 64)
      • 143. Wang, Q., Zhu, L.: ‘Polymer nanocomposites for electrical energy storage’, J. Polym. Sci. B. Polym. Phys., 2011, 49, p. 1421.
    65. 65)
      • 94. Choi, S.T., Lee, Y.K., Koo, J.C., et al: ‘Crosslinked fluoropolymers for use in actuators’. US 20100201227A1, Samsung Electronics Co Ltd, Sungkyunkwan University Foundation for Corporate Collaboration, Republic of Korea, 2010.
    66. 66)
      • 85. Voet, V.S.D., Tichelaar, M., Tanase, S., et al: ‘Poly (vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors’, Nanoscale, 2013, 5, (1), pp. 184192.
    67. 67)
      • 44. Wang, Y., Zhou, X., Chen, Q., et al: ‘Recent development of high energy density polymers for dielectric capacitors’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (4), pp. 10361042.
    68. 68)
      • 90. Xing, C., Wang, Y., Zhang, C., et al: ‘Immobilization of ionic liquids onto the poly(vinylidene fluoride) by electron beam irradiation’, Ind. Eng. Chem. Res., 2015, 54, (38), pp. 93519359.
    69. 69)
      • 14. Chu, B., Zhou, X., Ren, K., et al: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, (5785), pp. 334336.
    70. 70)
      • 65. Zhou, X., Zhao, X., Suo, Z., et al: ‘Electrical breakdown and ultrahigh electrical energy density in poly (vinylidene fluoride-hexafluoropropylene) copolymer’, Appl. Phys. Lett., 2009, 94, (16), p. 162901.
    71. 71)
      • 148. Li, Q., Han, K., Gadinski, M.R., et al: ‘High Energy and Power Density Capacitors from Solution-Processed Ternary Ferroelectric Polymer Nanocomposites’, Adv. Mater., 2014, 26, p. 6244.
    72. 72)
      • 141. Chen, X.Z., Li, Q., Chen, X., et al: ‘Nano-imprinted ferroelectric polymer nanodot arrays for high density data storage’, Adv. Funct. Mater., 2013, 23, (24), pp. 31243129.
    73. 73)
      • 129. Cheng, W., Gomopoulos, N., Fytas, G., et al: ‘Phonon dispersion and nanomechanical properties of periodic 1D multilayer polymer films’, Nano Lett., 2008, 8, (5), pp. 14231428.
    74. 74)
      • 36. Setiadi, D., Sarro, P.M., Regtien, P.P.L.: ‘A 3 × 1 integrated pyroelectric sensor based on VDF/TrFE copolymer’, Sens. Actuators A, Phys., 1996, 52, (1–3), pp. 103109.
    75. 75)
      • 6. Li, Q., Wang, Q.: ‘Ferroelectric polymers and their energy-related applications’, Macromol. Chem. Phys., 2016, 217, (11), pp. 12281244.
    76. 76)
      • 62. Xia, W., Xu, Z., Wen, F.: ‘Crystalline properties dependence of dielectric and energy storage properties of poly (vinylidene fluoride-chlorotrifluoroethylene)’, Appl. Phys. Lett., 2010, 97, (22), p. 222905.
    77. 77)
      • 68. Yang, L., Li, X., Allahyarov, E., et al: ‘Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect’, Polymer, 2013, 54, (7), pp. 17091728.
    78. 78)
      • 128. Priya, S.: ‘Advances in energy harvesting using low profile piezoelectric transducers’, J. Electroceram., 2007, 19, (1), pp. 167184.
    79. 79)
      • 80. Soulestin, T., Filho, P.M.D.S., Ladmiral, V., et al: ‘Ferroelectric fluorinated copolymers with improved adhesion properties’, Polym. Chem., 2017, 8, (6), pp. 10171027.
    80. 80)
      • 138. Cauda, V., Stassi, S., Bejtka, K., et al: ‘Nanoconfinement: an effective way to enhance PVDF piezoelectric properties’, ACS Appl. Mater. Interfaces, 2013, 5, (13), pp. 64306437.
    81. 81)
      • 46. Zhu, L., Wang, Q.: ‘Novel ferroelectric polymers for high energy density and low loss dielectrics’, Macromolecules, 2012, 45, (7), pp. 29372954.
    82. 82)
      • 109. Mohammadi, B., Yousefi, A.A., Bellah, S.M.: ‘Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films’, Polym. Test., 2007, 26, (1), pp. 4250.
    83. 83)
      • 113. Green, J.S., Farmer, B.L., Rabolt, J.F.: ‘Effect of thermal and solution history on the curie point of VF2–TrFE random copolymers’, J. Appl. Phys., 1986, 60, (8), pp. 26902693.
    84. 84)
      • 3. Kawai, H.: ‘The piezoelectricity of poly(vinylidene fluoride)’, Jpn. J. Appl. Phys., 1969, 8, (7), p. 975.
    85. 85)
      • 81. Gelin, M.P., Ameduri, B.: ‘Fluorinated block copolymers containing poly (vinylidene fluoride) or poly (vinylidene fluoride-co-hexafluoropropylene) blocks from perfluoropolyethers: synthesis and thermal properties’, J. Polym. Sci. A, Polym. Chem., 2003, 41, (1), pp. 160171.
    86. 86)
      • 9. Park, Y.J., Kang, S.J., Lotz, B., et al: ‘Ordered ferroelectric PVDF–TrFE thin films by high throughput epitaxy for nonvolatile polymer memory’, Macromolecules, 2008, 41, (22), pp. 86488654.
    87. 87)
      • 117. Barique, M.A., Ohigashi, H.: ‘Annealing effects on the curie transition temperature and melting temperature of poly (vinylidene fluoride/trifluoroethylene) single crystalline films’, Polymer, 2001, 42, (11), pp. 49814987.
    88. 88)
      • 18. Tiwari, S., Rana, F., Chan, K., et al: ‘Volatile and non-volatile memories in silicon with nano-crystal storage’. IEEE Int. Electron Devices Meeting, 1995. IEDM'95, Washington, DC, USA, 1995, pp. 521524.
    89. 89)
      • 33. Damjanovic, D., Newnham, R.E.: ‘Electrostrictive and piezoelectric materials for actuator applications’, J. Intell. Mater. Syst. Struct., 1992, 3, (2), pp. 190208.
    90. 90)
      • 75. Jayasuriya, A.C., Schirokauer, A., Scheinbeim, J.I.: ‘Crystal–structure dependence of electroactive properties in differently prepared poly (vinylidene fluoride/hexafluoropropylene) copolymer films’, J. Polym. Sci. B, Polym. Phys., 2001, 39, (22), pp. 27932799.
    91. 91)
      • 120. Bargain, F., Panine, P., Dos Santos, F.D., et al: ‘From solvent-cast to annealed and poled poly (VDF-co-TrFE) films: new insights on the defective ferroelectric phase’, Polymer, 2016, 105, pp. 144156.
    92. 92)
      • 31. Ambrosy, A., Holdik, K.: ‘Piezoelectric PVDF films as ultrasonic transducers’, J. Phys. E, Sci. Instrum., 1984, 17, (10), p. 856.
    93. 93)
      • 50. Cais, R.E., Kometani, J.M.: ‘Polymerization of vinylidene fluoride-d2. Minimal regiosequence and branch defects and assignment of preferred chain-growth direction from the deuterium isotope effect’, Macromolecules, 1984, 17, (9), pp. 18871889.
    94. 94)
      • 1. Chi, K.K.: ‘Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes’ (Elsevier Academic Press, Boston, 2004).
    95. 95)
      • 144. Jin, J., Lu, S.G., Chanthad, C., et al: ‘Multiferroic Polymer Composites with Greatly Enhanced Magnetoelectric Effect under a Low Magnetic Bias’, Adv. Mater., 2011, 23, p. 3853.
    96. 96)
      • 38. Bhavanasi, V., Kusuma, D.Y., Lee, P.S.: ‘Polarization orientation, piezoelectricity, and energy harvesting performance of ferroelectric PVDF–TrFE nanotubes synthesized by nanoconfinement’, Adv. Energy Mater., 2014, 4, (16), p. 1400723.
    97. 97)
      • 26. Ramadan, K.S., Sameoto, D., Evoy, S.: ‘A review of piezoelectric polymers as functional materials for electromechanical transducers’, Smart Mater. Struct., 2014, 23, (3), p. 033001.
    98. 98)
      • 27. Sencadas, V., Gregorio, JrR., Lanceros-Méndez, S.: ‘Α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch’, J. Macromol. Sci.®, 2009, 48, (3), pp. 514525.
    99. 99)
      • 47. Ameduri, B.: ‘From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends’, Chem. Rev., 2009, 109, (12), pp. 66326686.
    100. 100)
      • 149. Zhang, X., Shen, Y., Zhang, Q., et al: ‘Ultrahigh Energy Density of Polymer Nanocomposites Containing BaTiO3@TiO2 Nanofibers by Atomic-Scale Interface Engineering’, Adv. Mater., 2015, 27, p. 819.
    101. 101)
      • 40. Lu, S.G., Zhang, Q.: ‘Large electrocaloric effect in relaxor ferroelectrics’, J. Adv. Dielectr., 2012, 2, (03), p. 1230011.
    102. 102)
      • 24. Hu, Z., Tian, M., Nysten, B., et al: ‘Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories’, Nature Mater., 2009, 8, (1), pp. 6267.
    103. 103)
      • 64. Guan, F., Pan, J., Wang, J., et al: ‘Crystal orientation effect on electric energy storage in poly (vinylidene fluoride-co-hexafluoropropylene) copolymers’, Macromolecules, 2009, 43, (1), pp. 384392.
    104. 104)
      • 86. Voet, V.S.D., van Ekenstein, G.O.R.A., Meereboer, N.L., et al: ‘Double-crystalline PLLA-b-PVDF-b-PLLA triblock copolymers: preparation and crystallization’, Polym. Chem., 2014, 5, (7), pp. 22192230.
    105. 105)
      • 2. Nalwa, H.S.: ‘Ferroelectric polymers: chemistry, physics, and applications’ (Marcel Dekker, New York, 1995).
    106. 106)
      • 55. Domingues Dos. Santos, F., Lannuzel, T.: ‘Method of preparation of derivatives of vinylidene polyfluoride’. WO 2016055712A1, Arkema, France, 2016.
    107. 107)
      • 103. Scheinbeim, J., Nakafuku, C., Newman, B.A., et al: ‘High–pressure crystallization of poly (vinylidene fluoride)’, J. Appl. Phys., 1979, 50, (6), pp. 43994405.
    108. 108)
      • 95. Khanchaitit, P., Han, K., Gadinski, M.R., et al: ‘Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage’, Nat. Commun., 2013, 4, p. 2845.
    109. 109)
      • 52. Chen, L.T., Frank, C.W.: ‘The influence of head-to-head defects on the crystallization of PVF2’, Ferroelectrics, 1984, 57, (1), pp. 5162.
    110. 110)
      • 30. Ekinci, K.L.: ‘Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS)’, Small, 2005, 1, (8), pp. 786797.
    111. 111)
      • 121. Bao, H.M., Song, J.F., Zhang, J., et al: ‘Phase transitions and ferroelectric relaxor behavior in P (VDF − TrFE − CFE) terpolymers’, Macromolecules, 2007, 40, (7), pp. 23712379.
    112. 112)
      • 4. Kepler, R.G., Anderson, R.A.: ‘Piezoelectricity and pyroelectricity in polyvinylidene fluoride’, J. Appl. Phys., 1978, 49, (8), pp. 44904494.
    113. 113)
      • 29. Omote, K., Ohigashi, H., Koga, K.: ‘Temperature dependence of elastic, dielectric, and piezoelectric properties of ‘single crystalline’ films of vinylidene fluoride trifluoroethylene copolymer’, J. Appl. Phys., 1997, 81, (6), pp. 27602769.
    114. 114)
      • 10. Ueberschlag, P.: ‘PVDF piezoelectric polymer’, Sens. Rev., 2001, 21, (2), pp. 118126.
    115. 115)
      • 70. Lu, Y., Claude, J., Neese, B., et al: ‘A modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants’, J. Am. Chem. Soc., 2006, 128, (25), pp. 81208121.
    116. 116)
      • 78. Soulestin, T., Marcelino Dos Santos Filho, P., Ladmiral, V., et al: ‘Influence of trans-1, 3, 3, 3-tetrafluoropropene on the structure–properties relationship of VDF-and TrFE-based terpolymers’, Macromolecules, 2017, 50, (2), pp. 503514.
    117. 117)
      • 51. Lovinger, A.J., Davis, D.D., Cais, R.E., et al: ‘The role of molecular defects on the structure and phase transitions of poly (vinylidene fluoride)’, Polymer, 1987, 28, (4), pp. 617626.
    118. 118)
      • 125. Lei, T., Yu, L., Zheng, G., et al: ‘Electrospinning-induced preferred dipole orientation in PVDF fibers’, J. Mater. Sci., 2015, 50, (12), pp. 43424347.
    119. 119)
      • 25. Chen, X.Z., Chen, X., Guo, X., et al: ‘Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption’, Nanoscale, 2014, 6, (22), pp. 1394513951.
    120. 120)
      • 37. Nunes-Pereira, J., Sencadas, V., Correia, V., et al: ‘Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites’, Sens. Actuators A, Phys., 2013, 196, pp. 5562.
    121. 121)
      • 73. Yang, L., Tyburski, B.A., Dos Santos, F.D., et al: ‘Relaxor ferroelectric behavior from strong physical pinning in a poly (vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) random terpolymer’, Macromolecules, 2014, 47, (22), pp. 81198125.
    122. 122)
      • 11. Pecora, A., Maiolo, L., Maita, F., et al: ‘Flexible PVDF-TrFE pyroelectric sensor driven by polysilicon thin film transistor fabricated on ultra-thin polyimide substrate’, Sens. Actuators A, Phys., 2012, 185, pp. 3943.
    123. 123)
      • 130. Carr, J.M., Mackey, M., Flandin, L., et al: ‘Structure and transport properties of polyethylene terephthalate and poly (vinylidene fluoride-co-tetrafluoroethylene) multilayer films’, Polymer, 2013, 54, (6), pp. 16791690.
    124. 124)
      • 135. Zhao, X.L., Wang, J.L., Liu, B.L., et al: ‘Enhanced dielectric and ferroelectric properties in the artificial polymer multilayers’, Appl. Phys. Lett., 2014, 104, (8), p. 082903.
    125. 125)
      • 88. Guan, F., Wang, J., Yang, L., et al: ‘Confinement-Induced high-field antiferroelectric-like behavior in a poly (vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer’, Macromolecules, 2011, 44, (7), pp. 21902199.
    126. 126)
      • 136. Yin, K., Zhou, Z., Schuele, D.E., et al: ‘Effects of interphase modification and biaxial orientation on dielectric properties of poly (ethylene terephthalate)/poly (vinylidene fluoride-co-hexafluoropropylene) multilayer films’, ACS Appl. Mater. Interfaces, 2016, 8, (21), pp. 1355513566.
    127. 127)
      • 72. Xu, H., Cheng, Z.Y., Olson, D., et al: ‘Ferroelectric and electromechanical properties of poly (vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer’, Appl. Phys. Lett., 2001, 78, (16), pp. 23602362.
    128. 128)
      • 8. Ling, Q.D., Liaw, D.J., Zhu, C., et al: ‘Polymer electronic memories: materials, devices and mechanisms’, Prog. Polym. Sci., 2008, 33, (10), pp. 917978.
    129. 129)
      • 97. Lovinger, A.J.: ‘Polymorphic transformations in ferroelectric copolymers of vinylidene fluoride induced by electron irradiation’, Macromolecules, 1985, 18, (5), pp. 910918.
    130. 130)
      • 145. Huang, X.Y., Jiang, P.K.: ‘Core-Shell Structured High-k Polymer Nanocomposites for Energy Storage and Dielectric Applications’, Adv. Mater., 2015, 27, p. 546.
    131. 131)
      • 42. Basso, V., Russo, F., Gerard, J.F., et al: ‘Direct measurement of the electrocaloric effect in poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer films’, Appl. Phys. Lett., 2013, 103, (20), p. 202904.
    132. 132)
      • 107. Gregorio, R., Borges, D.S.: ‘Effect of crystallization rate on the formation of the polymorphs of solution cast poly (vinylidene fluoride)’, Polymer, 2008, 49, (18), pp. 40094016.
    133. 133)
      • 133. Mackey, M., Schuele, D.E., Zhu, L., et al: ‘Layer confinement effect on charge migration in polycarbonate/poly (vinylidene fluorid-co-hexafluoropropylene) multilayered films’, J. Appl. Phys., 2012, 111, (11), p. 113702.
    134. 134)
      • 69. Chung, T.C., Petchsuk, A.: ‘Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature’, Macromolecules, 2002, 35, (20), pp. 76787684.
    135. 135)
      • 132. Mackey, M., Schuele, D.E., Zhu, L., et al: ‘Reduction of dielectric hysteresis in multilayered films via nanoconfinement’, Macromolecules, 2012, 45, (4), pp. 19541962.
    136. 136)
      • 77. Soulestin, T., Ladmiral, V., Lannuzel, T., et al: ‘Differences in electroactive terpolymers based on VDF, TrFE and 2, 3, 3, 3-tetrafluoropropene prepared by batch solution and semi-continuous aqueous suspension polymerizations’, Polym. Chem., 2017, 8, (4), pp. 735747.
    137. 137)
      • 119. Koga, K., Ohigashi, H.: ‘Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers’, J. Appl. Phys., 1986, 59, (6), pp. 21422150.
    138. 138)
      • 63. He, X., Yao, K., Gan, B.K.: ‘Phase transition and properties of a ferroelectric poly (vinylidene fluoride-hexafluoropropylene) copolymer’, J. Appl. Phys., 2005, 97, (8), p. 084101.
    139. 139)
      • 127. Beringer, L.T., Xu, X., Shih, W., et al: ‘An electrospun PVDF-TrFe fiber sensor platform for biological applications’, Sens. Actuators A, Phys., 2015, 222, pp. 293300.
    140. 140)
      • 101. Chen, X.Z., Li, Z.W., Cheng, Z.X., et al: ‘Greatly enhanced energy density and patterned films induced by photo cross-linking of poly (vinylidene fluoride-chlorotrifluoroethylene)’, Macromol. Rapid Commun., 2011, 32, (1), pp. 9499.
    141. 141)
      • 67. Yu, Y.J., McGaughey, A.J.H.: ‘Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers’, J. Chem. Phys., 2016, 144, (1), p. 014901.
    142. 142)
      • 116. Lau, K., Liu, Y., Chen, H., et al: ‘Effect of annealing temperature on the morphology and piezoresponse characterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy’, Adv. Condens. Matter Phys., 2013, 2013, p. 435938.
    143. 143)
      • 71. Garrett, J.T., Roland, C.M., Petchsuk, A., et al: ‘Electrostrictive behavior of poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)’, Appl. Phys. Lett., 2003, 83, (6), pp. 11901192.
    144. 144)
      • 151. Wang, Y., Cui, J., Yuan, Q., et al: ‘Significantly Enhanced Breakdown Strength and Energy Density in Sandwich-Structured Barium Titanate/Poly(vinylidene fluoride) Nanocomposites’, Adv. Mater., 2015, 27, p. 6658.
    145. 145)
      • 53. Nandi, A.K., Mandelkern, L.: ‘The influence of chain structure on the equilibrium melting temperature of poly (vinylidene fluoride)’, J. Polym. Sci. B, Polym. Phys., 1991, 29, (10), pp. 12871297.
    146. 146)
      • 93. Cheng, Z.Y., Olson, D., Xu, H., et al: ‘Structural changes and transitional behavior studied from both micro-and macroscale in the high-energy electron-irradiated poly (vinylidene fluoride– trifluoroethylene) copolymer’, Macromolecules, 2002, 35, (3), pp. 664672.
    147. 147)
      • 13. Zhang, Q.M., Li, H., Poh, M., et al: ‘An all-organic composite actuator material with a high dielectric constant’, Nature, 2002, 419, (6904), pp. 284287.
    148. 148)
      • 134. Tseng, J.K., Tang, S., Zhou, Z., et al: ‘Interfacial polarization and layer thickness effect on electrical insulation in multilayered polysulfone/poly (vinylidene fluoride) films’, Polymer, 2014, 55, (1), pp. 814.
    149. 149)
      • 124. Zheng, J., He, A., Li, J., et al: ‘Polymorphism control of poly (vinylidene fluoride) through electrospinning’, Macromol. Rapid Commun., 2007, 28, (22), pp. 21592162.
    150. 150)
      • 15. Neese, B., Chu, B., Lu, S.G., et al: ‘Large electrocaloric effect in ferroelectric polymers near room temperature’, Science, 2008, 321, (5890), pp. 821823.
    151. 151)
      • 100. Tan, S., Li, J., Gao, G., et al: ‘Synthesis of fluoropolymer containing tunable unsaturation by a controlled dehydrochlorination of P(VDF-co-CTFE) and its curing for high performance rubber applications’, J. Mater. Chem., 2012, 22, (35), pp. 1849618504.
    152. 152)
      • 98. Chen, Y., Tang, X., Shu, J., et al: ‘Crosslinked P (VDF-CTFE)/PS-COOH nanocomposites for high-energy-density capacitor application’, J. Polym. Sci. B, Polym. Phys., 2016, 54, (12), pp. 11601169.
    153. 153)
      • 7. Baer, E., Zhu, L.: ‘50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films’, Macromolecules, 2017, 50, (6), pp. 22392256.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0003
Loading

Related content

content/journals/10.1049/iet-nde.2018.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address