Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Dielectric materials for high-temperature capacitors

Dielectric materials with excellent energy storage capability at elevated temperatures are critical to meet the increasing demand of electrical energy storage and power conditioning at extreme conditions such as hybrid electric vehicles, underground oil industries and aerospace systems. This review study summarises the important aspects and recent advances in the development of nanostructured dielectric materials including ceramics, polymers and polymer composites for high-temperature capacitor applications. The advantages and limitations of current dielectric materials are discussed and analysed. Ongoing research strategies to suppress the conduction loss and optimise the high-temperature capacitive performance of dielectrics have been highlighted. A summary and outlook will conclude this review.

References

    1. 1)
      • 84. Ye, M., Sun, Q., Chen, X., et al: ‘Effect of Eu doping on the electrical properties and energy storage performance of PbZrO3 antiferroelectric thin films’, J. Am. Ceram. Soc., 2011, 94, (10), pp. 32343236.
    2. 2)
      • 77. Jaffe, B.: ‘Antiferroelectric ceramics with field-enforced transitions: a new nonlinear circuit element’, Proc. IRE, 1961, 49, (8), pp. 12641267.
    3. 3)
      • 47. Zeng, Y., Qin, X., Jiang, S., et al: ‘Effect of BaF2 addition on crystallization kinetics and dielectric properties of B2O3–Nb2O5–SrO–BaO glass-ceramics’, J. Am. Ceram. Soc., 2011, 94, (2), pp. 469473.
    4. 4)
      • 62. Acosta, M., Zang, J., Jo, W., et al: ‘High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics’, J. Eur. Ceram. Soc., 2012, 32, (16), pp. 43274334.
    5. 5)
      • 10. Yao, Z., Song, Z., Hao, H., et al: ‘Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances’, Adv. Mater., 2017, 29, (20), p. 1601727.
    6. 6)
      • 114. Li, Z., Fredin, L.A., Tewari, P., et al: ‘In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites’, Chem. Mater., 2010, 22, (18), pp. 51545164.
    7. 7)
      • 20. Tan, Q., Irwin, P., Cao, Y.: ‘Advanced dielectrics for capacitors’, IEEJ Trans. Fundam. Mater., 2006, 126, (11), pp. 11531159.
    8. 8)
      • 97. Venkat, N., Dang, T.D., Bai, Z., et al: ‘High temperature polymer film dielectrics for aerospace power conditioning capacitor applications’, Mater. Sci. Eng. B, 2010, 168, (1), pp. 1621.
    9. 9)
      • 53. Ball, C.J., Begg, B.D., Cookson, D.J., et al: ‘Structures in the system CaTiO3/SrTiO3’, J. Solid State Chem., 1998, 139, (2), pp. 238247.
    10. 10)
      • 30. Zhang, G., Li, Q., Gu, H., et al: ‘Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration’, Adv. Mater., 2015, 27, (8), pp. 14501454.
    11. 11)
      • 101. Bauer, F., Fousson, E., Zhang, Q.M.: ‘Recent advances in highly electrostrictive P(VDF–TrFE–CFE) terpolymers’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (5), pp. 11491153.
    12. 12)
      • 118. Kim, Y., Kathaperumal, M., Chen, V.W., et al: ‘Bilayer structure with ultrahigh energy/power density using hybrid sol–gel dielectric and charge-blocking monolayer’, Adv. Energy Mater., 2015, 5, (19), p. 1500767.
    13. 13)
      • 23. Rabuffi, M., Picci, G.: ‘Status quo and future prospects for metallized polypropylene energy storage capacitors’, IEEE Pulsed Power Plasma Sci., 2002, 30, (5), pp. 19391942.
    14. 14)
      • 82. Hao, X., Zhai, J., Yao, X.: ‘Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films’, J. Am. Ceram. Soc., 2009, 92, (5), pp. 11331135.
    15. 15)
      • 126. Mackey, M., Hiltner, A., Baer, E., et al: ‘Enhanced breakdown strength of multilayered films fabricated by forced assembly microlayer coextrusion’, J. Phys. D., Appl. Phys., 2009, 42, (17), p. 175304.
    16. 16)
      • 41. Prateek Thakur, V.K., Gupta, R.K.: ‘Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects’, Chem. Rev., 2016, 116, (7), pp. 42604317.
    17. 17)
      • 52. Lee, H., Kim, J.R., Lanagan, M.J., et al: ‘High-energy density dielectrics and capacitors for elevated temperatures: Ca(Zr,Ti)O3’, J. Am. Ceram. Soc., 2013, 96, (4), pp. 12091213.
    18. 18)
      • 72. Li, Q., Wang, J., Ma, Y., et al: ‘Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 modified by CaZrO3’, J. Alloys Compd., 2016, 663, (5), pp. 701707.
    19. 19)
      • 12. Li, Q., Zhang, G., Liu, F., et al: ‘Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets’, Energy Environ. Sci., 2015, 8, (3), pp. 922931.
    20. 20)
      • 36. Zhang, G., Zhu, D., Zhang, X., et al: ‘High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method’, J. Am. Ceram. Soc., 2015, 98, (4), pp. 11751181.
    21. 21)
      • 111. Thakur, Y., Lean, M.H., Zhang, Q.M.: ‘Reducing conduction losses in high energy density polymer using nanocomposites’, Appl. Phys. Lett., 2017, 110, (12), p. 122905.
    22. 22)
      • 48. Gao, J., Kwon, D.K., Perini, S., et al: ‘Glass dielectrics in extreme high-temperature environment’, J. Am. Ceram. Soc., 2016, 99, (12), pp. 40454049.
    23. 23)
      • 1. Weimer, J.A.: ‘Electrical power technology for the more electric aircraft’. AIAA/IEEE Digital Avionics Systems Conf., Fort Worth, TX, USA, October 1993, pp. 445450.
    24. 24)
      • 73. Zheng, D., Zuo, R.: ‘Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range’, J. Eur. Ceram. Soc., 2017, 37, (1), pp. 413418.
    25. 25)
      • 64. Chen, P., Chu, B.: ‘Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics’, J. Eur. Ceram. Soc., 2016, 36, (1), pp. 8188.
    26. 26)
      • 91. Liaw, D.J., Wang, K.L., Huang, Y.C., et al: ‘Advanced polyimide materials: syntheses, physical properties and applications’, Prog. Polym. Sci., 2012, 37, (7), pp. 907974.
    27. 27)
      • 81. Zhang, G., Liu, P., Fan, B., et al: ‘Large energy density in Ba doped Pb0.97La0.02(Zr0.65Sn0.3Ti0.05)O3 antiferroelectric ceramics with improved temperature stability’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 744748.
    28. 28)
      • 29. Song, Z., Liu, H., Hao, H., et al: ‘The effect of grain boundary on the energy storage properties of (Ba0.4Sr0.6M)TiO3 paraelectric ceramics by varying grain sizes’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2015, 62, (4), pp. 609616.
    29. 29)
      • 121. Li, Q., Liu, F., Yang, T., et al: ‘Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures’, Proc. Natl. Acad. Sci., 2016, 113, (36), pp. 999510000.
    30. 30)
      • 37. Zhang, H., Chen, X., Cao, F., et al: ‘Charge–discharge properties of an antiferroelectric ceramics capacitor under different electric fields’, J. Am. Ceram. Soc., 2010, 93, (12), pp. 40154017.
    31. 31)
      • 105. Zhang, X., Zhao, Y., Wu, Y., et al: ‘Poly(tetrafluoro ethylene-hexafluoropropylene) films with high energy density and low loss for high-temperature pulse capacitors’, Polymer, 2017, 114, (7), pp. 311318.
    32. 32)
      • 112. Pan, C., Kou, K., Jia, Q., et al: ‘Fabrication and characterization of micro-nano AlN co-filled PTFE composites with enhanced thermal conductivity: a morphology-promoted synergistic effect’, J. Mater. Sci. Mater. Electron., 2016, 27, (11), pp. 1190911916.
    33. 33)
      • 87. Khanchaitit, P., Han, K., Gadinski, M.R., et al: ‘Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage’, Nat. Commun., 2013, 4, p. 2845.
    34. 34)
      • 119. Wang, Y., Cui, J., Wang, L., et al: ‘Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites’, J. Mater. Chem. A, 2017, 5, (9), pp. 47104718.
    35. 35)
      • 5. Zhang, X.M., Liu, J.G., Yang, S.Y.: ‘A review on recent progress of R&D for high-temperature resistant polymer dielectrics and their applications in electrical and electronic insulation’, Rev. Adv. Mater. Sci., 2016, 46, (1), pp. 2238.
    36. 36)
      • 7. Randall, C.A., Ogihara, H., Kim, J.R., et al: ‘High temperature and high energy density dielectric materials’. IEEE Pulsed Power Conf., Washington, DC, USA, July 2009, pp. 346351.
    37. 37)
      • 93. Seferis, J.C.: ‘Polyetheretherketone (PEEK): processing-structure and properties studies for a matrix in high-performance composites’, Polym. Compos., 1986, 7, (3), pp. 158169.
    38. 38)
      • 75. Hao, X., Zhai, J., Kong, L.B., et al: ‘A comprehensive review on the progress of lead zirconate-based antiferroelectric materials’, Prog. Mater. Sci., 2014, 63, pp. 157.
    39. 39)
      • 115. Liu, F., Li, Q., Cui, J., et al: ‘High-energy-density dielectric polymer nanocomposites with trilayered architecture’, Adv. Funct. Mater., 2017, 27, (20), p. 1606292.
    40. 40)
      • 102. Xie, B., Zhang, Q., Zhang, H., et al: ‘Largely enhanced ferroelectric and energy storage performances of P(VDF–CTFE) nanocomposites at a lower electric field using BaTiO3 nanowires by stirring hydrothermal method’, Ceram. Int., 2016, 42, (16), pp. 1901219018.
    41. 41)
      • 59. Zhang, L., Hao, H., Liu, H., et al: ‘Effect of HfO2 addition as intergranular grains on the energy storage behavior of Ca0.6Sr0.4TiO3 ceramics’, J. Eur. Ceram. Soc., 2016, 36, (13), pp. 31573163.
    42. 42)
      • 49. Xu, X., Magee, J., Hoskins, A., et al: ‘Robust class-I dielectric for high temperature applications’. Proc. 29th Symp. Passive Comp (CARTS USA), Jacksonville, USA, 2009, pp. 114.
    43. 43)
      • 117. Hu, P., Shen, Y., Guan, Y., et al: ‘Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density’, Adv. Funct. Mater., 2014, 24, (21), pp. 31723178.
    44. 44)
      • 89. Han, K., Li, Q., Chanthad, C., et al: ‘A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density’, Adv. Funct. Mater., 2015, 25, (23), pp. 35053513.
    45. 45)
      • 71. Li, F., Zhai, J., Shen, B., et al: ‘Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3–SrTiO3–NaNbO3 lead-free ferroelectric ceramics’, J. Appl. Phys., 2017, 121, (5), p. 54103.
    46. 46)
      • 69. Gao, F., Dong, X., Mao, C., et al: ‘Energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics’, J. Am. Ceram. Soc., 2011, 94, (12), pp. 43824386.
    47. 47)
      • 17. Nazar, L.F., Patey, T.J., Schlegel, C., et al: ‘Glass as dielectric for high temperature power capacitors’. Materials Research Society Symp. Proc., Cambridge, England, 2014, 1679, pp. 16.
    48. 48)
      • 11. Chen, Q., Shen, Y., Zhang, S., et al: ‘Polymer-based dielectrics with high energy storage density’, Annu. Rev. Mater. Res., 2015, 45, (1), pp. 433458.
    49. 49)
      • 55. Howard, C.J., Withers, R.L., Zhang, Z., et al: ‘Space-group symmetry for the perovskite Ca0.3Sr0.7TiO3’, J. Phys. Condens. Matter, 2005, 17, (44), pp. L459L465.
    50. 50)
      • 98. Hammoud, A.N., Suthar, J.L.: ‘Characterization of polybenzimidazole (PBI) film at high temperatures’. IEEE Electrical Insulation Magazine, Toronto, ON, Canada, June 1990, pp. 449451.
    51. 51)
      • 2. Sarjeant, W.J., Zirnheld, J., MacDougall, F.W.: ‘Capacitors’, IEEE Trans. Plasma Sci., 1998, 26, (5), pp. 13681392.
    52. 52)
      • 15. Wang, D.H., Kurish, B.A., Treufeld, I., et al: ‘Synthesis and characterization of high nitrile content polyimides as dielectric films for electrical energy storage’, J. Polym. Sci. A Polym. Chem., 2015, 53, (3), pp. 422436.
    53. 53)
      • 106. Stricker, J., Scofield, J., Brar, N.: ‘Evaluation of fluorene polyester film capacitors’. CARTS USA-2010, New Orleans, LA, March 2010, pp. 441456.
    54. 54)
      • 18. Laghari, J.R., Sarjeant, W.J.: ‘Energy-storage pulsed-power capacitor technology’, IEEE Trans. Power Electron., 1992, 7, (1), pp. 251257.
    55. 55)
      • 78. Bernard, D., Pannetier, J., Lucas, J.: ‘Ferroelectric and antiferroelectric materials with pyrochlore structure’, Ferroelectrics, 1978, 21, (1), pp. 429431.
    56. 56)
      • 54. Qin, S., Becerro, A.I., Seifert, F., et al: ‘Phase transitions in Ca1−xSrxTiO3 perovskites: effects of composition and temperature’, J. Mater. Chem., 2000, 10, (7), pp. 16091615.
    57. 57)
      • 13. Gadinski, M.R., Han, K., Li, Q., et al: ‘High energy density and breakdown strength from β and γ phases in poly(vinylidene fluoride-co-bromotrifluoroethylene) copolymers’, ACS Appl. Mater. Interfaces, 2014, 6, (21), pp. 1898118988.
    58. 58)
      • 107. Rajib, M., Martinez, R., Shuvo, M., et al: ‘Enhanced energy storage of dielectric nanocomposites at elevated temperatures’, Int. J. Appl. Ceram. Technol., 2016, 13, (1), pp. 125132.
    59. 59)
      • 110. Sharma, V., Wang, C., Lorenzini, R.G., et al: ‘Rational design of all organic polymer dielectrics’, Nat. Commun., 2014, 5, p. 4845.
    60. 60)
      • 96. Hayashida, K.: ‘Highly improved dielectric properties of polymer/α-Fe2O3 composites at elevated temperatures’, RSC Adv., 2016, 6, (69), pp. 6487164878.
    61. 61)
      • 124. Yin, K., Zhu, L., Olah, A.: ‘Polymer multilayer films for high temperature dielectric applications’. SPE ANTEC Indianapolis, Indianapolis, USA, 2016, pp. 560563.
    62. 62)
      • 34. Jin, L., Li, F., Zhang, S.: ‘Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures’, J. Am. Ceram. Soc., 2014, 97, (1), pp. 127.
    63. 63)
      • 6. Lin, X., Salari, M., Arava, L.M.R., et al: ‘High temperature electrical energy storage: advances, challenges, and frontiers’, Chem. Soc. Rev., 2016, 45, (21), pp. 58485887.
    64. 64)
      • 46. Sun, K.H.: ‘Fundamental condition of glass formation’, J. Am. Ceram. Soc., 1947, 30, (9), pp. 277281.
    65. 65)
      • 108. Sun, W., Lu, X., Jiang, J., et al: ‘Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures’, J. Appl. Phys., 2017, 121, (24), p. 244101.
    66. 66)
      • 86. Ma, B., Kwon, D.-K., Narayanan, M., et al: ‘Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors’, J. Mater. Res., 2009, 24, (9), pp. 29932996.
    67. 67)
      • 19. Chu, B.: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, (5785), pp. 334336.
    68. 68)
      • 116. Wang, Y., Cui, J., Yuan, Q., et al: ‘Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites’, Adv. Mater., 2015, 27, (42), pp. 66586663.
    69. 69)
      • 38. Zhang, L., Jiang, S., Zeng, Y., et al: ‘Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02) (Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics’, Ceram. Int., 2014, 40, (4), pp. 54555460.
    70. 70)
      • 32. Olsen, R.B., Evans, D.: ‘Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material’, J. Appl. Phys., 1983, 54, (10), pp. 59415944.
    71. 71)
      • 79. Subbarao, E.C.: ‘Ferroelectric and antiferroelectric materials’, Ferroelectrics, 1973, 5, (1), pp. 267280.
    72. 72)
      • 90. Pan, J., Li, K., Chuayprakong, S., et al: ‘High-temperature poly(phthalazinone ether ketone) thin films for dielectric energy storage’, ACS Appl. Mater. Interfaces, 2010, 2, (5), pp. 12861289.
    73. 73)
      • 56. Carpenter, M.A., Howard, C.J., Knight, K.S., et al: ‘Structural relationships and a phase diagram for (Ca,Sr)TiO3 perovskites’, J. Phys. Condens. Matter, 2006, 18, (48), pp. 1072510749.
    74. 74)
      • 122. Azizi, A., Gadinski, M.R., Li, Q., et al: ‘High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials’, Adv. Mater., 2017, 29, (35), p. 1701864.
    75. 75)
      • 65. Lim, J.B., Zhang, S., Kim, N., et al: ‘High-temperature dielectrics in the BiScO3–BaTiO3–(K1/2Bi1/2) TiO3 ternary system’, J. Am. Ceram. Soc., 2009, 92, (3), pp. 679682.
    76. 76)
      • 28. Jiang, S., Zhang, L., Zhang, G., et al: ‘Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties’, Ceram. Int., 2013, 39, (5), pp. 55715575.
    77. 77)
      • 123. Tseng, J.K., Tang, S., Zhou, Z., et al: ‘Interfacial polarization and layer thickness effect on electrical insulation in multilayered polysulfone/poly(vinylidene fluoride) films’, Polymer, 2014, 55, (1), pp. 814.
    78. 78)
      • 22. Kim, P., Jones, S.C., Hotchkiss, P.J., et al: ‘Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength’, Adv. Mater., 2007, 19, (7), pp. 10011005.
    79. 79)
      • 33. Cross, L.E.: ‘Relaxor ferroelectrics: an overview’, Ferroelectrics, 1994, 151, (1), pp. 305320.
    80. 80)
      • 39. Zhang, L., Jiang, S., Fan, B., et al: ‘Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008) (Zr0.65Sn0.3 Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics by spark plasma sintering’, J. Alloys Compd., 2015, 622, (15), pp. 162165.
    81. 81)
      • 66. Beuerlein, M.A., Kumar, N., Usher, T.-M., et al: ‘Current understanding of structure-processing-property relationships in BaTiO3–Bi(M)O3 dielectrics’, J. Am. Ceram. Soc., 2016, 99, (9), pp. 28492870.
    82. 82)
      • 14. Ho, J., Jow, T.R.: ‘High field conduction in heat resistant polymers at elevated temperature for metallized film capacitors’. 2012 IEEE Int. Power Modulator High Voltage Conf. (IPMHVC), San Diego, CA, USA, June 2012, pp. 399402.
    83. 83)
      • 27. Fredin, L.A., Li, Z., Ratner, M.A., et al: ‘Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness’, Adv. Mater., 2012, 24, (44), pp. 59465953.
    84. 84)
      • 83. Parui, J., Krupanidhi, S.B.: ‘Enhancement of charge and energy storage in sol–gel derived pure and La-modified PbZrO3 thin films’, Appl. Phys. Lett., 2008, 92, (19), p. 192901.
    85. 85)
      • 16. Tan, D., Zhang, L., Chen, Q., et al: ‘High-temperature capacitor polymer films’, J. Electron. Mater., 2014, 43, (12), pp. 45694575.
    86. 86)
      • 70. Cao, W., Li, W., Feng, Y., et al: ‘Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems’, Appl. Phys. Lett., 2016, 108, (20), pp. 05.
    87. 87)
      • 58. Kersch, A., Fischer, D.: ‘Phase stability and dielectric constant of ABO3 perovskites from first principles’, J. Appl. Phys., 2009, 106, (1), p. 014105.
    88. 88)
      • 125. Mackey, M., Schuele, D.E., Zhu, L., et al: ‘Reduction of dielectric hysteresis in multilayered films via nanoconfinement’, Macromolecules, 2012, 45, (4), pp. 19541962.
    89. 89)
      • 51. Shay, D.P., Podraza, N.J., Donnelly, N.J., et al: ‘High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics’, J. Am. Ceram. Soc., 2012, 95, (4), pp. 13481355.
    90. 90)
      • 76. Patel, S., Chauhan, A., Vaish, R.: ‘Enhancing electrical energy storage density in anti-ferroelectric ceramics using ferroelastic domain switching’, Mater. Res. Express, 2014, 1, (4), p. 45502.
    91. 91)
      • 61. Dittmer, R., Jo, W., Damjanovic, D., et al: ‘Lead-free high-temperature dielectrics with wide operational range’, J. Appl. Phys., 2011, 109, (3), p. 034107.
    92. 92)
      • 43. Smith, N.J., Rangarajan, B., Lanagan, M.T., et al: ‘Alkali-free glass as a high energy density dielectric material’, Mater. Lett., 2009, 63, (15), pp. 12451248.
    93. 93)
      • 113. Song, Y., Shen, Y., Liu, H., et al: ‘Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix’, J. Mater. Chem., 2012, 22, (32), pp. 1649116498.
    94. 94)
      • 104. Miao, B., Liu, J., Zhang, X., et al: ‘Ferroelectric relaxation dependence of poly(vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly(methyl methacrylate)’, RSC Adv., 2016, 6, (87), pp. 8442684438.
    95. 95)
      • 3. Johnson, R.W., Evans, J.L., Jacobsen, P., et al: ‘The changing automotive environment: high-temperature electronics’, IEEE Trans. Electron. Packag. Manuf., 2004, 27, (3), pp. 164176.
    96. 96)
      • 24. Zhang, S., Xia, R., Shrout, T.R.: ‘Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range’, Appl. Phys. Lett., 2007, 91, (13), pp. 20052008.
    97. 97)
      • 85. Wang, Y., Hao, X., Yang, J., et al: ‘Fabrication and energy-storage performance of (Pb,La)(Zr,Ti)O3 antiferro electric thick films derived from polyvinylpyrrolidone-modified chemical solution’, J. Appl. Phys., 2012, 112, (3), p. 034105.
    98. 98)
      • 100. Fernandes, B.: ‘Perspectives in the development of personality’, J. Med. (Oporto), 1959, 39, (849), pp. 57, passim.
    99. 99)
      • 92. Liu, F., Li, Q., Li, Z., et al: ‘Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics’, Compos. Sci. Technol., 2017, 142, (12), pp. 139144.
    100. 100)
      • 25. Zhang, G., Liu, S., Yu, Y., et al: ‘Microstructure and electrical properties of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 anti-ferroelectric ceramics fabricated by the hot-press sintering method’, J. Eur. Ceram. Soc., 2013, 33, (1), pp. 113121.
    101. 101)
      • 103. Xie, B., Zhang, H., Zhang, Q., et al: ‘Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires’, J. Mater. Chem. A, 2017, 5, (13), pp. 60706078.
    102. 102)
      • 44. Manoharan, M.P., Zou, C., Furman, E., et al: ‘Flexible glass for high temperature energy storage capacitors’, Energy Technol., 2013, 1, (5–6), pp. 313318.
    103. 103)
      • 50. Xu, X., Gurav, A.S., Lessner, P.M., et al: ‘Robust BME class-I MLCCs for harsh-environment applications’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 26362643.
    104. 104)
      • 88. Zhu, L., Wang, Q.: ‘Novel ferroelectric polymers for high energy density and low loss dielectrics’, Macromolecules, 2012, 45, (7), pp. 29372954.
    105. 105)
      • 31. Li, Q., Zhang, G., Zhang, X., et al: ‘Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy’, Adv. Mater., 2015, 27, (13), pp. 22362241.
    106. 106)
      • 60. Zhang, L., Hao, H., Zhang, S., et al: ‘Defect structure-electrical property relationship in Mn-doped calcium strontium titanate dielectric ceramics’, J. Am. Ceram. Soc., 2017, 100, (10), pp. 46384648.
    107. 107)
      • 120. Wang, Y., Wang, L., Yuan, Q., et al: ‘Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect’, J. Mater. Chem. A, 2017, 5, (22), pp. 1084910855.
    108. 108)
      • 21. Li, Q., Chen, L., Gadinski, M.R., et al: ‘Flexible high-temperature dielectric materials from polymer nanocomposites’, Nature, 2015, 523, (7562), pp. 576579.
    109. 109)
      • 68. Wang, X., Zhang, L., Hao, X., et al: ‘Dielectric properties and energy-storage performances of (1−x)Pb(Mg1/3Nb2/3)O3xPbTiO3 relaxor ferroelectric thin films’, J. Mater. Sci. Mater. Electron., 2015, 26, (12), pp. 95839590.
    110. 110)
      • 99. Li, Q., Wang, Q.: ‘Ferroelectric polymers and their energy-related applications’, Macromol. Chem. Phys., 2016, 217, (11), pp. 12281244.
    111. 111)
      • 26. Jiang, S., Zhu, Z., Zhang, L., et al: ‘Electrical properties of Bi(Ni1/2Ti1/2)O3–PbTiO3 high-TC piezoelectric ceramics fabricated by the microwave sintering process’, Mater. Sci. Eng. B, 2014, 179, pp. 3640.
    112. 112)
      • 57. Zhang, L., Wang, X., Liu, H., et al: ‘Structural and dielectric properties of BaTiO3-CaTiO3–SrTiO3 ternary system ceramics’, J. Am. Ceram. Soc., 2010, 93, (4), pp. 10491055.
    113. 113)
      • 80. Cao, W.P., Li, W.L., Dai, X.F., et al: ‘Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics’, J. Eur. Ceram. Soc., 2016, 36, (3), pp. 593600.
    114. 114)
      • 67. Sun, Z., Wang, X., Liu, M., et al: ‘Large energy density, excellent thermal stability, and high cycling endurance of lead-free BaZr0.2Ti0.8O3 film capacitors’, ACS Appl. Mater. Interfaces, 2017, 9, (20), pp. 1709617101.
    115. 115)
      • 9. Hao, X.: ‘A review on the dielectric materials for high energy-storage application’, J. Adv. Dielectr., 2013, 3, (1), p. 1330001.
    116. 116)
      • 40. Whittingham, M.S.: ‘Materials challenges facing electrical energy storage’, Harnessing Mater. Energy, 2008, 33, (4), pp. 411419.
    117. 117)
      • 42. Lee, H., Smith, N.J., Pantano, C.G., et al: ‘Dielectric breakdown of thinned BaO–Al2O3–B2O3–SiO2 glass’, J. Am. Ceram. Soc., 2010, 93, (8), pp. 23462351.
    118. 118)
      • 4. Watson, J., Gustavo, C.: ‘High-temperature electronics pose design and reliability challenges’, Analog Dialogue, 2012, 46, (2), pp. 39.
    119. 119)
      • 63. Xu, Q., Song, Z., Tang, W., et al: ‘Ultra-wide temperature stable dielectrics based on Bi0.5Na0.5TiO3–NaNbO3 system’, J. Am. Ceram. Soc., 2015, 98, (10), pp. 31193126.
    120. 120)
      • 94. Pan, J., Li, K., Li, J., et al: ‘Dielectric characteristics of poly(ether ketone ketone) for high temperature capacitive energy storage’, Appl. Phys. Lett., 2009, 95, (2), p. 022902.
    121. 121)
      • 95. Cheng, Z., Lin, M., Wu, S., et al: ‘Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors’, Appl. Phys. Lett., 2015, 106, (20), p. 202902.
    122. 122)
      • 74. Pan, H., Zeng, Y., Shen, Y., et al: ‘BiFeO3–SrTiO3 thin film as new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance’, J. Mater. Chem. A, 2017, 5, (12), pp. 59205926.
    123. 123)
      • 109. Thakur, Y., Zhang, T., Iacob, C., et al: ‘Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers’, Nanoscale, 2017, 9, (31), pp. 1099210997.
    124. 124)
      • 8. Fletcher, N.H., Hilton, A.D., Ricketts, B.W.: ‘Optimization of energy storage density in ceramic capacitors’, J. Phys. D., Appl. Phys., 1996, 29, pp. 253258.
    125. 125)
      • 45. McPherson, J., Kim, J.Y., Shanware, A., et al: ‘Thermochemical description of dielectric breakdown in high dielectric constant materials’, Appl. Phys. Lett., 2003, 82, (13), pp. 21212123.
    126. 126)
      • 35. Zhai, J., Li, X., Chen, H.: ‘Effect of the orientation on the ferroelectric-antiferroelectric behavior of sol–gel deposited (Pb,Nb)(Zr,Sn,Ti)O3 thin films’, Thin Solid Films, 2004, 446, (2), pp. 200204.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0002
Loading

Related content

content/journals/10.1049/iet-nde.2018.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address