access icon openaccess PVDF-based dielectric polymers and their applications in electronic materials

The attractive dielectric poly(vinylidene fluoride) (PVDF) and its copolymers are well confirmed possessing the highest electroactive response including dielectric constant, piezoelectric and ferroelectric effects, which have increasingly wide range of applications such as in energy transfer, energy generation and storage, monitoring and control, and include the development of capacitors, sensors, actuators and so on. In this study, by clarifying the reliability of dielectric performances on their crystal phase structure of various PVDF polymers, the different physical and chemical fabricating ways to achieve different forms of PVDF samples such as linear polymers, ferroelectrics, and relaxor ferroelectrics were identified and quantified. In addition, many recent advances in the PVDF-based polymer dielectrics and some developed applications of these polymers are presented, which gives a reference in academic and engineering area to select an appropriate PVDF series dielectric polymer.

Inspec keywords: permittivity; dielectric polarisation; relaxor ferroelectrics; polymer films; polymers; crystallisation

Other keywords: PVDF samples; dielectric constant; polymer dielectrics; dielectric performances; dielectric polymers; ferroelectric effects; relaxor ferroelectrics; piezoelectric effects; poly(vinylidene fluoride); electroactive response; copolymers; crystal phase structure; linear polymers; PVDF polymers

Subjects: Dielectric polarization and depolarization effects; Preparation of organic materials, polymers and plastics; Ferroelectricity and antiferroelectricity; Structure of polymers, elastomers, and plastics; Piezoelectric and ferroelectric materials; Dielectric permittivity; Polymers and plastics (engineering materials science)

References

    1. 1)
      • 11. Scheirs, J.: ‘Modern fluoropolymers: high performance polymers for diverse applications’, Focus Catalysts, 1997, 2006, (9), p. 8.
    2. 2)
      • 24. Lutringer, G., Weill, G.: ‘Solution properties of poly(vinylidene fluoride): 1. Relation between microgel formation and microstructure’, Polymer, 1991, 32, (5), pp. 877883.
    3. 3)
      • 75. Lovinger, A.J., Johnson, G.E., Bair, H.E., et al: ‘Structural, dielectric, and thermal investigation of the curie transition in a tetrafluoroethylene copolymer of vinylidene fluoride’, J. Appl. Phys., 1984, 56, (9), pp. 24122418.
    4. 4)
      • 27. Weinhold, S., Bachmann, M.A., Litt, M.H., et al: ‘Orthorhombic vs. monoclinic structures for the α and γ phases of poly(vinylidene fluoride): an analysis’, Macromolecules, 1982, 15, (6), pp. 15351538.
    5. 5)
      • 49. Zhang, X.M., Zhao, Y.F., Wu, Y.H., et al: ‘Poly(tetrafluoroethylene-hexafluoropropylene) films with high energy density and low loss for high-temperature pulse capacitors’, Polymer, 2017, 114, pp. 311318.
    6. 6)
      • 58. Wen, F., Xu, Z., Xia, W.M., et al: ‘High-energy-density poly(styrene-co-acrylonitrile) thin films’, J. Electron. Mater., 2013, 42, (12), pp. 34893493.
    7. 7)
      • 8. Lovinger, A.J.: ‘Ferroelectric polymers’, Science, 1983, 220, (4602), pp. 11151121.
    8. 8)
      • 134. Xu, H., Shen, D., Zhang, Q.: ‘Structural and ferroelectric response in vinylidene fluoride/trifluoroethylene/hexafluoropropylene terpolymers’, Polymer, 2007, 48, (7), pp. 21242129.
    9. 9)
      • 12. Mitchell, G.R., Davis, F.J., Olley, R.H.: ‘Scales of structure in polymers’, in Mitchell, G.R., Tojeira, A. (Eds.): ‘Controlling the morphology of polymers’, vol. 1 (Basel, Switzerland, Springer International Publishing, 2016), pp. 13.
    10. 10)
      • 59. Wang, Y., Zhou, X., Lin, M., et al: ‘High-energy density in aromatic polyurea thin films’, Appl. Phys. Lett., 2009, 94, (20), p. 202905.
    11. 11)
      • 43. Shah, D., Maiti, P., Gunn, E., et al: ‘Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology’, Adv. Mater., 2004, 16, (14), pp. 11731177.
    12. 12)
      • 124. Li, J., Gong, H., Yang, Q., et al: ‘Linear-like dielectric behavior and low energy loss achieved in poly(ethyl methacrylate) modified poly(vinylidene-co-trifluoroethylene)’, Appl. Phys. Lett., 2014, 104, (26), p. 263901.
    13. 13)
      • 121. Wang, Z., Liu, J., Gong, H., et al: ‘Synthesis of poly(methyl methacrylate–methallyl alcohol) via controllable partial hydrogenation of poly(methyl methacrylate) towards high pulse energy storage capacitor application’, RSC Adv., 2016, 6, (41), pp. 3485534865.
    14. 14)
      • 5. Mathur, S.C., Scheinbeim, J.I., Newman, B.A.: ‘Piezoelectric properties and ferroelectric hysteresis effects in uniaxially stretched nylon-11 films’, J. Appl. Phys., 1984, 56, (9), pp. 24192425.
    15. 15)
      • 64. Belloch, G.P., Sanchez, M.S., Ribelles, J.L.G., et al: ‘Conformational motions in immiscible blends of polycarbonate and styrene-acrylonitrile copolymers’, Polym. Eng. Sci., 1999, 39, (4), pp. 688698.
    16. 16)
      • 140. Pelrine, R.E., Kornbluh, R.D., Joseph, J.P.: ‘Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation’, Sens. Actuators A, Phys., 1998, 64, (64), pp. 7785.
    17. 17)
      • 87. Zhang, W.W., Wang, J., Gao, P., et al: ‘Synthesis of poly(vinylidene fluoride-trifluoroethylene) via a controlled silyl radical reduction of poly(vinylidene fluoride-chlorotrifluoroethylene)’, J. Mater. Chem. C, 2017, 5, (26), pp. 64336441.
    18. 18)
      • 85. Tan, S.B., Liu, E.Q., Zhang, Q.P., et al: ‘Controlled hydrogenation of P(VDF-co-CTFE) to prepare P(VDF-co-TrFE-co-CTFE) in the presence of CuX (X = Cl, Br) complexes’, Chem. Commun., 2011, 47, (15), pp. 45444546.
    19. 19)
      • 61. Wu, S., Lin, M., Lu, S.G., et al: ‘Polar-fluoropolymer blends with tailored nanostructures for high energy density low loss capacitor applications’, Appl. Phys. Lett., 2011, 99, (13), p. 132901.
    20. 20)
      • 86. Zhang, Z.C., Zhu, Z.G.: China Pat. CN201210086186.8, 2012.
    21. 21)
      • 6. Huang, L., Zhuang, X., Hu, J., et al: ‘Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications’, Biomacromolecules, 2008, 9, (3), pp. 850858.
    22. 22)
      • 69. Liu, F.H., Li, Q., Li, Z.Y., et al: ‘Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics’, Compos. Sci. Technol., 2017, 142, pp. 139144.
    23. 23)
      • 45. Capsal, J.F., Dantras, E., Lacabanne, C.: ‘Molecular mobility interpretation of the dielectric relaxor behavior in fluorinated copolymers and terpolymers’, Non-Cryst. Solids, 2013, 363, pp. 2025.
    24. 24)
      • 93. Golub, M., Wydeven, T., Johnson, A.: ‘On the similarity of plasma-polymerized tetrafluoroethylene and RF plasma-sputtered polytetrafluoroethylene’, Polym. Prepr. Div. Am. Chem. Soc., 1997, 38, (2), pp. 668669.
    25. 25)
      • 21. Lovinger, A.J.: inBassett, G.C. (Ed.): ‘Developments in crystalline polymers’, vol. 1 (Elsevier Applied Science Publishers, Ltd., Barking, UK, 1982), pp. 195273.
    26. 26)
      • 104. Maiolo, L., Maita, F., Pecora, A., et al: ‘Flexible PVDF-TrFE pyroelectric sensor integrated on a fully printed P-channel organic transistor’, Eurosensors XXVI, 2012, 47, pp. 526529.
    27. 27)
      • 112. Furukawa, T., Date, M., Fukada, E.: ‘Hysteresis phenomena in polyvinylidene fluoride under high electric field’, J. Appl. Phys., 1980, 51, (2), pp. 11351141.
    28. 28)
      • 145. Feng, X., Tadigadapa, S., Zhang, Q.M.: ‘Electroactive polymer based microfluidic pump’, Sens. Actuators A, Phys., 2006, 125, (2), pp. 346352.
    29. 29)
      • 149. Frecker, M.I., Aguilera, W.M.: ‘Analytical modeling of a segmented unimorph actuator using electrostrictive P(VDF-TrFE) copolymer’, Smart Mater. Struct., 2004, 13, (1), pp. 8291.
    30. 30)
      • 31. Weinhold, S., Litt, M., Lando, J.B.: ‘The effect of crystallite orientation on the electric field induced α to Î′ crystal phase transition in poly(vinylidene fluoride)’, Ferroelectrics, 1984, 57, (1), pp. 277296.
    31. 31)
      • 44. Mandal, D., Kim, K.J., Lee, J.S.: ‘Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene fluoride) thin films’, Langmuir Acs J. Surf. Colloids, 2012, 28, (28), pp. 1031010317.
    32. 32)
      • 103. Mannsfeld, S.C., Tee, B.C., Stoltenberg, R.M., et al: ‘Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers’, Nature Mater., 2010, 9, (10), pp. 859864.
    33. 33)
      • 84. Chung, T.C.M., Petchsuk, A.: ‘Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature’, Macromolecules, 2002, 35, (20), pp. 76787684.
    34. 34)
      • 141. Zhang, Q.M., Bharti, V., Cheng, Z.Y., et al: ‘Novel electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer actuators’, Sens. Actuators A, Phys., 2001, 90, (1), pp. 138147.
    35. 35)
      • 62. Zhang, Z.C., Chung, T.C.M.: ‘Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss’, Macromolecules, 2007, 40, (4), pp. 783785.
    36. 36)
      • 98. Kochervinski, V., Murasheva, Y.: ‘Microstructure and ferroelectric properties of copolymers of vinylidene fluoride with tetrafluoroethylene of the 71/29 composition’, Polym. Sci., 1991, 33, pp. 19671976.
    37. 37)
      • 133. Zhang, Q.M., Huang, C., Xia, F., et al: ‘Electric EAP’, in Bar-Cohen, Y. (Ed.): ‘Electroactive polymers as artificial muscles-capabilities, potentials and challenges’ (SPIE Optical Engineering Press, WA, 2004), pp. 95150.
    38. 38)
      • 70. Stern, S.A., Fried, J.R.: ‘Permeability of polymers to gases and vapors’, in Mark, James E. (Ed.): ‘Physical properties of polymers handbook’ (Springer, New York, 2007), pp. 10331047.
    39. 39)
      • 125. Higashihata, Y., Sako, J., Yagi, T.: ‘Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers’, Ferroelectrics, 2012, 32, (1), pp. 8592.
    40. 40)
      • 34. Li, W., Meng, Q., Zheng, Y., et al: ‘Electric energy storage properties of poly(vinylidene fluoride)’, Appl. Phys. Lett., 2010, 96, (19), p. 192905.
    41. 41)
      • 138. Zhang, Q.M., Su, J., Kim, C.H., et al: ‘An experimental investigation of electromechanical responses in a polyurethane elastomer’, J. Appl. Phys., 1997, 81, (6), pp. 27702776.
    42. 42)
      • 35. He, L., Sun, J., Wang, X., et al: ‘Facile and effective promotion of β crystalline phase in poly(vinylidene fluoride) via the incorporation of imidazolium ionic liquids’, Polym. Int., 2013, 62, (4), pp. 638646.
    43. 43)
      • 106. Siddiqui, S., Kim, D.I., Le, T.D., et al: ‘High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage’, Nano Energy, 2015, 15, pp. 177185.
    44. 44)
      • 123. Li, J., Hu, X., Gao, G., et al: ‘Tuning phase transition and ferroelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) via grafting with desired poly(methacrylic ester)s as side chains’, J. Mater. Chem. C., 2013, 1, pp. 11111121.
    45. 45)
      • 65. Zhou, X., Zhao, X.H., Suo, Z.G., et al: ‘Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer’, Appl. Phys. Lett., 2009, 94, (16), p. 162901.
    46. 46)
      • 48. Rabuffi, M., Picci, G.: ‘Status quo and future prospects for metallized polypropylene energy storage capacitors’, IEEE Trans. Plasma Sci., 2002, 30, (5), pp. 19391942.
    47. 47)
      • 114. Furukawa, T.: ‘Structure and functional properties of ferroelectric polymers’, Adv. Colloid Interface Sci., 1997, 71, pp. 183208.
    48. 48)
      • 36. Gregorio, R.: ‘Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions’, Appl. Polym. Sci., 2006, 100, pp. 32723279.
    49. 49)
      • 15. Romasanta, L.J., Lopez-Manchado, M.A., Verdejo, R.: ‘Increasing the performance of dielectric elastomer actuators: a review from the materials perspective’, Prog. Polym. Sci., 2015, 51, pp. 188211.
    50. 50)
      • 143. Guiffard, B., Seveyrat, L., Sebald, G., et al: ‘Enhanced electric field-induced strain in non-percolative carbon nanopowder/polyurethane composites’, J. Phys. D, Appl. Phys., 2006, 39, (14), pp. 30533057.
    51. 51)
      • 100. Lee, J.S., Shin, K.Y., Cheong, O.J., et al: ‘Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring’, Sci. Rep., 2015, 5, pp. 7887.
    52. 52)
      • 68. Wei, J.J., Zhang, Z.B., Tseng, J.K.: ‘Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups’, ACS Appl. Mater. Interfaces, 2015, 7, (9), pp. 52485257.
    53. 53)
      • 81. Xia, W.M., Xu, Z., Zhang, Q.P., et al: ‘Dependence of dielectric, ferroelectric, and piezoelectric properties on crystalline properties of p(VDF-co-TrFE) copolymers’, J. Polym. Sci. B, Polym. Phys., 2012, 50, (18), pp. 12711276.
    54. 54)
      • 80. Koga, K., Nakano, N., Hattori, T., et al: ‘Crystallization, field-induced phase transformation, thermally induced phase transition, and piezoelectric activity in P(vinylidene fluoride-TrFE) copolymers with high molar content of vinylidene fluoride’, J. Appl. Phys., 1990, 67, (2), pp. 965974.
    55. 55)
      • 52. Steeman, P.A.M., Maurer, F.H.J., Turhout, J.V.: ‘Dielectric properties of blends of polycarbonate and acrylonitrile-butadiene-styrene copolymer’, Polym. Eng. Sci., 2004, 34, (9), pp. 697706.
    56. 56)
      • 1. Plunkett, R.F.: Assigned to DuPont Co, U.S. Patent 2,230,654, accessed 4 February 1941.
    57. 57)
      • 4. Martins, P., Lopes, A.C., Lanceros-Mendez, S.: ‘Electroactive phases of poly(vinylidene fluoride): determination, processing and applications’, Prog. Polym. Sci., 2014, 39, (4), pp. 683706.
    58. 58)
      • 39. Esterly, D.M., Love, B.J.: ‘Phase transformation to β-poly(vinylidene fluoride) by milling’, J. Polym. Sci. B Polym. Phys., 2004, 42, (1), pp. 9197.
    59. 59)
      • 88. Xia, W.M., Wang, Z.G., Xing, J.H., et al: ‘The dependence of dielectric and ferroelectric properties on crystal phase structures of the hydrogenized P(VDF-TrFE) films with different thermal processing’, IEEE Trans. Ultra. Ferro. Freq. Control, 2016, 63, (10), pp. 16741680.
    60. 60)
      • 28. Weinhold, S., Litt, M.H., Lando, J.B.: ‘The crystal structure of the alternating copolymer of hexafluoroisobutylene and vinylidene fluoride’, J. Polym. Sci. B Polym. Phys., 1982, 20, (3), pp. 535552.
    61. 61)
      • 30. Weinhold, S., Litt, M.H., Lando, J.B.: ‘The crystal structure of the γ phase of poly(vinylidene fluoride)’, Macromolecules, 1980, 13, (10), pp. 50955099.
    62. 62)
      • 99. Kochervinski, V., Malyshkina, A., Bessonova, N., et al: ‘Effect of recrystallization on the molecular mobility of a copolymer of vinylidene fluoride and hexafluoropropylene’, J. Appl. Polym. Sci., 2011, 120, (1), pp. 1320.
    63. 63)
      • 131. Petchsuk, A.: ‘Ferroelectric terpolymer, based on semicrystalline VDF/TRFE/CHLORO-containing termonomers: synthesis, electrical properties, and functionalization reactions’. MS Thesis, The Pennsylvania State University, 2003.
    64. 64)
      • 144. Lallart, M., Cottinet, P.J., Lebrun, L., et al: ‘Evaluation of energy harvesting performance of electrostrictive polymer and carbon-filled terpolymer composites’, J. Appl. Phys., 2010, 108, (3), p. 034901.
    65. 65)
      • 137. Zhuang, Z., Shi, H.: ‘Temperature-stable high electrostrictive strain relaxer ferroelectric ceramics for servo-actuator applications’, Sens. Actuators A, Phys., 1993, 35, (3), pp. 279282.
    66. 66)
      • 109. Feng, J.B., Xuan, S.H., Ding, L., et al: ‘Magnetoactive elastomer/PVDF composite film based magnetically controllable actuator with real-time deformation feedback property’, Compos. A, Appl. Sci. Manuf., 2017, 103, pp. 2534.
    67. 67)
      • 136. Zhang, Y., Zhao, Y., Tan, S., et al: ‘Inserting -CH=CH- into P(VDF-TrFE) by C-F activation mediated with Cu(0) in a controlled atom transfer radical elimination process’, Polym. Chem., 2017, 8, (11), pp. 18401849.
    68. 68)
      • 26. Zhu, L., Qing, W.: ‘Novel ferroelectric polymers for high energy density and low loss dielectrics’, Macromolecules, 2012, 45, (7), pp. 29372954.
    69. 69)
      • 67. Zhou, X., Chu, B.J., Neese, B., et al: ‘Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene)copolymer’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (5), pp. 11331138.
    70. 70)
      • 118. Guan, F., Yuan, Z., Shu, E.W., et al: ‘Fast discharge speed in poly(vinylidene fluoride) graft copolymer dielectric films achieved by confined ferroelectricity’, Appl. Phys. Lett., 2009, 94, (5), p. 052907.
    71. 71)
      • 116. Furukawa, T., Takahashi, Y.: ‘Ferroelectric and antiferroelectric transitions in random copolymers of vinylidene fluoride and trifluoroethylene’, Ferroelectrics, 2011, 264, (1), pp. 17391748.
    72. 72)
      • 150. Lallart, M., Capsal, J.F., Idrissa, A.K.M., et al: ‘Actuation abilities of multiphasic electroactive polymeric systems’, J. Appl. Phys., 2012, 112, (9), pp. 16111618.
    73. 73)
      • 122. Miao, B., Liu, J., Zhang, X., et al: ‘Ferroelectric relaxation dependence of poly(vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly(methyl methacrylate)’, RSC Adv., 2016, 6, (87), pp. 8442684438.
    74. 74)
      • 89. Xia, W.M., Gu, Y.J., You, C.Y., et al: ‘A crystal phase transition and its effect on the dielectric properties of a hydrogenated P(VDF-co-TrFE) with low TrFE molar content’, RSC Adv., 2015, 5, (130), pp. 107557107565.
    75. 75)
      • 130. Huang, C., Klein, R., Xia, F., et al: ‘Poly(vinylidene floride-trifluoroethylene) based high performance electroactive polymers’, IEEE Trans. Dielectr. Electr. Insul., 2003, 11, (2), pp. 299311.
    76. 76)
      • 33. Hahn, B., Wendorff, J., Yoon, D.Y.: ‘Dielectric relaxation of the crystal-amorphous interphase in poly(vinylidene fluoride) and its blends with poly(methyl methacrylate)’, Macromolecules, 1985, 18, (4), pp. 718721.
    77. 77)
      • 76. Ohigashi, H., Koga, K.: ‘Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor’, Jpn. J. Appl. Phys., 1982, 21, (8), pp. L455L457.
    78. 78)
      • 9. Mohajir, B.E.E., Heymans, N.: ‘Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments.1. Change in structure’, Polymer, 2001, 42, (13), pp. 56615667.
    79. 79)
      • 10. Priya, L., Jog, J.P.: ‘Polymorphism in intercalated poly(vinylidene fluoride)/clay nanocomposites’, J. Appl. Polym. Sci., 2010, 89, (8), pp. 20362040.
    80. 80)
      • 110. Schmidt, V.H., Lediaev, L., Polasik, J., et al: ‘Piezoelectric actuators employing PVDF coated with flexible PEDOT-PSS polymer electrodes’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (5), pp. 11401148.
    81. 81)
      • 54. Hundal, J.S., Nath, R.: ‘Ferroelectric studies in stretched and corona charged SAN films’. IEEE 10th Int. Symp. on Electrets, Athens, Greece, 1999, pp. 659662.
    82. 82)
      • 126. Wang, T.T., Herbert, J.M., Glass, A.M.: ‘The applications of ferroelectric polymers’ (Chapman and Hall, Glasgow, New York, Blackie, 1988).
    83. 83)
      • 127. Bauer, F., Fousson, E., Zhang, Q.M., et al: ‘Ferroelectric copolymers and terpolymers for electrostrictors: synthesis and properties’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (2), pp. 293298.
    84. 84)
      • 71. Yuan, X.P., Chung, T.C.M.: ‘Cross-linking effect on dielectric properties of polypropylene thin films and applications in electric energy storage’, Appl. Phys. Lett., 2011, 98, p. 062901.
    85. 85)
      • 56. Lee, H., Salomon, R.E., Labes, M.M.: ‘Pyroelectricity due to a space-charge mechanism in a copolymer of acrylonitrile and vinylidene chloride’, J. Appl. Phys., 1979, 50, (5), pp. 37733774.
    86. 86)
      • 63. Ngai, K.L., White, C.T.: ‘Frequency dependence of dielectric loss in condensed matter’, Phys. Rev. B, 1979, 20, (6), pp. 24752486.
    87. 87)
      • 102. Vu, D.C., Eiichi, S.: ‘Numerical simulation of output response of PVDF sensor attached on a cantilever beam subjected to impact loading’, Sensors, 2016, 16, (5), p. 601.
    88. 88)
      • 19. Ebnesajjad, S.: ‘Poly(vinyl fluoride). Kirk-Othmer encyclopedia of chemical technology’ (New York, USA, John Wiley & Sons, Inc., 2001).
    89. 89)
      • 13. Stevens, M.P.: ‘Polymer chemistry’ (Oxford University Press, New York, 1990).
    90. 90)
      • 128. Zhang, Q.M., Bharti, V., Zhao, X.: ‘Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer’, Science, 1998, 280, (5372), pp. 21012104.
    91. 91)
      • 46. Chen, Q., Shen, Y., Zhang, S., et al: ‘Polymer-based dielectrics with high energy storage density’, Annu. Rev. Mater. Res., 2015, 45, (1), pp. 433458.
    92. 92)
      • 94. Lovinger, A.: ‘Ferroelectric transition in a copolymer of vinylidene fluoride and tetrafluoroethylene’, Macromolecules, 1983, 16, (9), pp. 15291534.
    93. 93)
      • 82. Xia, W.M., Xu, Z., Wen, F., et al: ‘Crystalline properties dependence of dielectric and energy storage properties of poly(vinylidene fluoride-chlorotrifluoroethylene)’, Appl. Phys. Letts., 2010, 97, (22), p. 222905.
    94. 94)
      • 117. Guan, F., Yang, L., Wang, J., et al: ‘Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications’, Adv. Funct. Mater., 2011, 21, (16), pp. 31763188.
    95. 95)
      • 79. Lovinger, A.J., Davis, D.D., Cais, R.E., et al: ‘On the Curie temperature of poly(vinylidene fluoride)’, Macromolecules, 1986, 19, (5), pp. 14911494.
    96. 96)
      • 37. Boccaccio, T., Bottino, A., Capannelli, G., et al: ‘Characterization of PVDF membranes by vibrational spectroscopy’, J. Membr. Sci., 2002, 210, (2), pp. 315329.
    97. 97)
      • 32. Dohany, J.E., Humphrey, J.S.: ‘Vinylidene fluoride polymers’, in Matyjaszewski, K. (Ed.): ‘Encyclopedia of polymer science and engineering’, vol. 17 (John Wiley & Sons, New York, 1989, 2nd edn.), pp. 532548.
    98. 98)
      • 119. Li, J., Tan, S., Ding, S., et al: ‘High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application’, J. Mater. Chem., 2012, 22, (44), pp. 2346823476.
    99. 99)
      • 105. Li, S., Crovetto, A., Peng, Z., et al: ‘Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency’, Sens. Actuators A, Phys., 2016, 247, pp. 547554.
    100. 100)
      • 78. Ohigashi, H.: ‘Piezoelectric polymers–materials and manufacture’, Jpn. J. Appl. Phys., 1985, 24, (S2), p. 23.
    101. 101)
      • 101. Pullano, S.A., Mahbub, I., Islam, S.K., et al: ‘PVDF sensor stimulated by infrared radiation for temperature monitoring in microfluidic devices’, Sensors, 2017, 17, (4), p. 850.
    102. 102)
      • 40. Gregorio, R., Ueno, E.M.: ‘Effect of crystalline phase, orientation and temperature on the dielectric properties of poly(vinylidene fluoride) (PVDF)’, J. Mater. Sci., 1999, 34, (18), pp. 44894500.
    103. 103)
      • 95. Lovinger, A., Davis, D., Cais, R., et al: ‘Compositional variation of the structure and solid-state transformations of vinylidene fluoride/tetrafluoroethylene copolymers’, Macromolecules, 1988, 21, (1), pp. 7883.
    104. 104)
      • 135. Tan, S., Hu, X., Ding, S., et al: ‘Significantly improving dielectric and energy storage properties via uniaxially stretching crosslinked P(VDF-co-TrFE) films’, J. Mater. Chem. A, 2013, 1, (35), pp. 1035310361.
    105. 105)
      • 97. Tashiro, K., Kaito, H., Kobayashi, M.: ‘Structural changes in ferroelectric phase transitions of vinylidene fluoride-tetrafluoroethylene copolymers: 1. Vinylidene fluoride content dependence of the transition behaviour’, Polymer, 1992, 33, (14), pp. 29152928.
    106. 106)
      • 96. Lando, J., Doll, W.: ‘The polymorphism of poly(vinylidene fluoride). I. The effect of head-to-head structure’, J. Macromol. Sci. B, 1968, 2, (2), pp. 205218.
    107. 107)
      • 91. Madorskaya, L.Y., Budtov, V.P., Otradina, G.A., et al: ‘Features of copolymerization of vinylidene fluoride with tetrafluoroethylene using ammonium persulphate’, Polym. Sci. USSR, 1986, 28, (5), pp. 10621071.
    108. 108)
      • 51. Tasaka, S.: ‘Ferroelectric polymers’ (Marcel Dekker, New York, NY, 1994).
    109. 109)
      • 50. Wang, T.T., Takase, Y.: ‘Ferroelectriclike dielectric behavior in the piezoelectric amorphous copolymer of vinylidenecyanide and vinyl acetate’, J. Appl. Phys., 1987, 62, (8), pp. 34663469.
    110. 110)
      • 113. Koizumi, N., Murata, Y., Tsunashima, H.: ‘Polarization reversal and double hysteresis loop in copolymers of vinylidene fluoride and trifluoroethylene’, IEEE Trans. Electr. Insul., 1986, 21, (3), pp. 543548.
    111. 111)
      • 90. Cais, R., Kometani, J.: ‘Structural studies of vinylidene fluoride-tetrafluoroethylene copolymers by nuclear magnetic resonance spectorscopy’, Anal. Chim. Acta., 1986, 189, (1), pp. 101116.
    112. 112)
      • 55. Berlepsch, H.V., Kunstler, W., Danz, R.: ‘Piezoelectricity in acrylonitrile/methylacrylate copolymer’, Ferroelectrics, 1988, 81, (1), pp. 353356.
    113. 113)
      • 77. Koga, K., Ohigashi, H.: ‘Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers’, J. Appl. Phys., 1986, 59, (6), pp. 21422150.
    114. 114)
      • 146. Cianchetti, M., Mattoli, V., Mazzolai, B., et al: ‘A new design methodology of electrostrictive actuators for bio-inspired robotics’, Sens. Actuators B, Chem., 2009, 142, (1), pp. 288297.
    115. 115)
      • 132. Bobnar, V., Vodopivec, B., Kosec, M., et al: ‘Dielectric properties of relaxor-like vinylidene fluoride-trifluoroethylene-base electroactive polymers’, Macromolecules, 2003, 36, (12), pp. 44364442.
    116. 116)
      • 73. Hougham, G., Cassidy, P.E., Johns, K., et al: ‘Fluoropolymers 1: synthesis’ (Springer, USA, 2002).
    117. 117)
      • 107. Mhetre, M.R., Abhyankar, H.K.: ‘Human exhaled air energy harvesting with specific reference to PVDF film’, Int. J. Eng. Sci. Technol., 2016, 20, (1), pp. 332339.
    118. 118)
      • 25. Lutringer, G., Meurer, B., Weill, G.: ‘Solution properties of poly(vinylidene fluoride): 2. Relation between microgel formation and microstructure’, Polymer, 1991, 32, (5), pp. 884891.
    119. 119)
      • 83. Lu, Y.Y., Claude, J., Neese, B., et al: ‘A modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants’, J. Am. Chem. Soc., 2006, 128, (25), pp. 81208121.
    120. 120)
      • 20. Brasure, D.E., Ebnesajjad, S.: ‘Vinyl fluoride polymers’, in Kroschwitz, Jacqueline. I. (Ed.): ‘Encyclopedia of polymer science and engineering’, vol. 17 (John Wiley & Sons, New York, 2nd edn.), pp. 468491.
    121. 121)
      • 111. Raja, M., Ryu, S.H., Shanmugharaj, A.M.: ‘Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape memory properties of polyurethane (PU)/poly(vinylidene diflouride) (PVDF) composites’, Colloids Surf. A, Physicochem. Eng. Asp., 2014, 450, (1), pp. 5966.
    122. 122)
      • 74. Lovinger, A.J., Furukawa, T., Davis, G.T., et al: ‘Crystallographic changes characterizing the curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 2. Oriented or poled samples’, Polymer, 1983, 24, (10), pp. 12331239.
    123. 123)
      • 23. Xia, W.M., Xu, Z., Zhang, Z.C.: ‘Dielectric, piezoelectric and ferroelectric properties of a poly(vinylidene fluoride-co-trifluoroethylene) synthesized via a hydrogenation process’, Polymer, 2014, 54, (1), pp. 440446.
    124. 124)
      • 18. Ford, T.A.: U.S. Patent2, 468, 054, assigned to DuPont Co, 26 April 1949.
    125. 125)
      • 2. A.F.Teflon®. Available at http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/, accessed 2010.
    126. 126)
      • 14. Zhu, L.: ‘Exploring strategies for high dielectric constant and low loss polymer dielectrics’, J. Phys. Chem. Lett., 2014, 5, (21), pp. 36773687.
    127. 127)
      • 7. Ebnesajjad, S.: ‘Introduction to fluoropolymers: materials, technology, and applications’ (William Andrews is an Imprint of Elsevier, Waltham, 2013).
    128. 128)
      • 72. Fukada, E., Takashita, S.: ‘Piezoelectric effect in polarized poly(vinylidene fluoride)’, Jpn. J. Appl. Phys., 1969, 8, (7), p. 960.
    129. 129)
      • 22. Görlitz, V.M., Minke, R., Trautvetter, W., et al: ‘Struktur and eigenschaften von polyvinylfluorid (PVF) und polyvinylidenfluorid (PVF2)’, Angew. Makromol. Chem., 1973, 29, (1), pp. 137162.
    130. 130)
      • 29. Weinhold, S., Litt, M.H., Lando, J.B.: ‘The effect of surface nucleation on the crystallization of the α phase of poly(vinylidene fluoride)’, J. Appl. Phys., 1980, 51, (10), pp. 51455155.
    131. 131)
      • 60. Wang, Y., Zhou, X., Chen, Q., et al: ‘Recent development of high energy density polymers for dielectric capacitors’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (4), pp. 10361042.
    132. 132)
      • 120. Gong, H., Miao, B., Zhang, X., et al: ‘High-field antiferroelectric-like behavior in uniaxially stretched poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-grafted-poly(methyl methacrylate) films with high energy density’, RSC Adv., 2016, 6, (2), pp. 15891599.
    133. 133)
      • 17. Ford, T.A., Edward, H.W.: ‘Polyvinylidene fluoride and process for obtaining the same’. US, US2435537, 1948.
    134. 134)
      • 147. Capsal, J.F., Galineau, J., Lallart, M., et al: ‘Plasticized relaxor ferroelectric terpolymer: toward giant electrostriction, high mechanical energy and low electric field actuators’, Sens. Actuators A, Phys., 2014, 207, (3), pp. 2531.
    135. 135)
      • 148. Bar-Cohen, Y.: ‘EAP History, Current Status, and Infrastructure’, in ‘Electroactive polymers as artificial muscles-capabilities, potentials and challenges’, (SPIE Optical Engineering Press, WA, 2004), pp. 113.
    136. 136)
      • 42. Li, J.J., Meng, Q.J., Li, W.J., et al: ‘Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride)’, Appl. Polym. Sci., 2011, 122, pp. 16591668.
    137. 137)
      • 16. Martins, P., Costa, C.M., Botelho, G., et al: ‘Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites’, Mater. Chem. Phys., 2012, 131, (3), pp. 698705.
    138. 138)
      • 108. Gusarov, B., Gusarova, E., Viala, B., et al: ‘Thermal energy harvesting by piezoelectric PVDF polymer coupled with shape memory alloy ⋆’, Sens. Actuators A, Phys., 2016, 243, pp. 175181.
    139. 139)
      • 47. Neese, B., Wang, Y., Chu, B., et al: ‘Piezoelectric responses in poly(vinylidene flu-oride/hexafluoropropylene) copolymers’, Appl. Phys. Lett., 2007, 90, (24), pp. 14.
    140. 140)
      • 41. KYNAR® & KYNAR FLEX® PVDF, Performance Characteristics & Data, published by Arkema Corp, 2012. Available at http://www.kynar.com.
    141. 141)
      • 139. Hirai, T., Kasazaki, T., Kurita, Y., et al: ‘Polyurethane elastomer actuator’. US, US5977685 A, 1999.
    142. 142)
      • 53. Hundal, J.S., Nath, R.J.: ‘Piezoelectricity and polarization studies in unstretched san copolymer films’, Mater. Sci., 1999, 34, (21), pp. 53975401.
    143. 143)
      • 38. Bormashenko, Y., Pogreb, R., Stanevsky, O., et al: ‘Vibrational spectrum of PVDF and its interpretation’, Polym. Test., 2004, 23, (7), pp. 791796.
    144. 144)
      • 66. Chu, B.J., Zhou, X., Ren, K.L., et al: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, (5785), pp. 334336.
    145. 145)
      • 3. Plunkett Roy, J.: ‘The history of polytetra fluoroethylene: discovery and development’, in Kirshenbaum, G. (Ed.): ‘High performance polymers, their origin and development’ (Springer, Netherlands, 1986), pp. 261266.
    146. 146)
      • 92. Loginova, M.N., Podlesskaya, N.K., Berezina, G.G.: ‘Some aspects of the formation and transformation of macromolecules during copolymerization of fluorine-containing monomers’, USSR. Plast. Massy, 1990, pp. 1928 (Chem Abstr., 1990, 114, 102888).
    147. 147)
      • 115. Takahashi, Y., Kodama, H., Nakamura, M., et al: ‘Antiferroelectric-like behavior of vinylidene fluoride/trifluoroethylene copolymers with low vinylidene fluoride content’, Polym. J., 1999, 31, (31), pp. 263267.
    148. 148)
      • 57. Tasaka, S., Nakamura, T., Inagaki, N.: ‘Ferroelectric behavior in copolymers of acrylonitrile and allylcyanide’, Jpn. J. Appl. Phys., 1992, 31, (8), pp. 24922494.
    149. 149)
      • 129. Xia, F., Cheng, Z.Y., Xu, H.S., et al: ‘High electromechanical responses in terpolymer of poly(vinylidene fluoridetrifluoroethylene-chlorofluoroethylene)’, Adv. Mats., 2002, 14, (21), pp. 15741577.
    150. 150)
      • 142. Zhang, S., Zhang, N., Huang, C., et al: ‘Microstructure and electromechanical properties of carbon nanotube/poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) composites’, Adv. Mater., 2010, 17, (15), pp. 18971901.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0001
Loading

Related content

content/journals/10.1049/iet-nde.2018.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading