Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Progress of heat resistant dielectric polymer nanocomposites with high dielectric constant

Fast development of cutting-edge areas including aviation and space, new energy, electrical and electronics industries asks for increasing requirements on heat resistant dielectric polymer nanocomposites with high dielectric constant (DK ). This review focuses on recent research progress of thermally resistant polymer nanocomposites with high DK , which consists of four parts. In the first two parts, high DK nanocomposites based on thermally resistant thermoplastics and thermosetting resins are introduced, and then the effect of temperature on the dielectric properties of nanocomposites is discussed in the third part. In the last part, summary and future perspectives were provided.

References

    1. 1)
      • 115. Wang, J., Wu, J., Xu, W., et al: ‘Preparation of poly(vinylidene fluoride) films with excellent electric property, improved dielectric property and dominant polar crystalline forms by adding a quaternary phosphorus salt functionalized graphene’, Compos. Sci. Technol., 2014, 91, pp. 17.
    2. 2)
      • 55. Sun, J., Xue, Q., Guo, Q., et al: ‘Excellent dielectric properties of poly(vinylidene fluoride) composites based on sandwich structured MnO2/graphene nanosheets/MnO2’, Compos. A Appl. Sci. Manuf., 2014, 67, pp. 252258.
    3. 3)
      • 168. Zhang, P., He, J., Cui, Z.K., et al: ‘Preparation and characterization of STRG/PI composite films with optimized dielectric and mechanical properties’, Polymer, 2015, 65, pp. 262269.
    4. 4)
      • 78. Ding, L., Liu, L., Li, P., et al: ‘Dielectric properties of graphene-iron oxide/polyimide films with oriented graphene’, J. Appl. Polym. Sci., 2016, 133, (12), p. 43041.
    5. 5)
      • 50. Liang, X., Zhao, T., Hu, Y., et al: ‘Dielectric properties of silver nanowires-filled polyvinylidene fluoride composite with low percolation threshold’, J. Nanoparticle Res., 2014, 16, (9), p. 2578.
    6. 6)
      • 99. Luo, S., Yu, S., Sun, R., et al: ‘Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss’, ACS Appl. Mater. Interfaces, 2014, 6, (1), pp. 176182.
    7. 7)
      • 31. Liu, S., Xue, S., Zhang, W., et al: ‘Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly(vinylidene fluoride) nanocomposites’, Ceram. Int., 2014, 40, (10), pp. 1563315640.
    8. 8)
      • 133. Huang, X., Feng, M., Liu, X.: ‘Synergistic enhancement of dielectric constant of novel core/shell BaTiO3@MWCNTs/PEN nanocomposites with high thermal stability’, J. Mater. Sci. Mater. Electron., 2013, 25, (1), pp. 97102.
    9. 9)
      • 140. Cao, L., Zhang, W., Zhang, X., et al: ‘Low-cost preparation of high-k expanded graphite/carbon nanotube/cyanate ester composites with low dielectric loss and low percolation threshold’, Ind. Eng. Chem. Res., 2014, 53, (7), pp. 26612672.
    10. 10)
      • 128. Luo, H., Wu, Z., Chen, C., et al: ‘Methoxypolyethylene glycol functionalized carbon nanotube composites with high permittivity and low dielectric loss’, Compos. A Appl. Sci. Manuf., 2016, 86, pp. 5765.
    11. 11)
      • 88. Zhang, Z., Gu, Y., Bi, J., et al: ‘Tunable BT@SiO2 core@shell filler reinforced polymer composite with high breakdown strength and release energy density’, Compos. A Appl. Sci. Manuf., 2016, 85, pp. 172180.
    12. 12)
      • 102. Patel, P.K., Yadav, K.L., Dutta, S.: ‘Development of Ba0.95Sr0.05(Fe0.5Nb0.5)O3/poly(vinylidene fluoride) nanocomposites for energy storage’, J. Mater. Sci. Mater. Electron., 2015, 26, (6), pp. 41654171.
    13. 13)
      • 125. Chen, G., Wang, X., Lin, J., et al: ‘Nano-KTN@Ag/PVDF composite films with high permittivity and low dielectric loss by introduction of designed KTN/Ag core/shell nanoparticles’, J. Mater. Chem. C, 2016, 4, (34), pp. 80708076.
    14. 14)
      • 38. Ouyang, X., Cao, P., Zhang, W., et al: ‘Improving dielectric properties and thermal conductivity of polymer composites with CaCu3Ti4O12 and β-SiC hybrid fillers’, Funct. Mater. Lett., 2015, 08, (03), p. 1540011.
    15. 15)
      • 20. Gadinski, M.R., Han, K., Li, Q., et al: ‘High energy density and breakdown strength from beta and gamma phases in poly(vinylidene fluoride-co-bromotrifluoroethylene) copolymers’, ACS Appl. Mater. Interfaces, 2014, 6, (21), pp. 1898118988.
    16. 16)
      • 105. Luo, H., Chen, C., Zhou, K., et al: ‘Enhancement of dielectric properties and energy storage density in poly(vinylidene fluoride-co-hexafluoropropylene) by relaxor ferroelectric ceramics’, RSC Adv., 2015, 5, (84), pp. 6851568522.
    17. 17)
      • 96. Zhang, X., Chen, W., Wang, J., et al: ‘Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers’, Nanoscale, 2014, 6, (12), pp. 67016709.
    18. 18)
      • 61. Zhang, Z., Gu, Y., Wang, S., et al: ‘Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film’, Carbon, 2016, 107, pp. 405414.
    19. 19)
      • 25. Ehrhardt, C., Fettkenhauer, C., Glenneberg, J., et al: ‘A solution-based approach to composite dielectric films of surface functionalized CaCu3Ti4O12and P(VDF-HFP)’, J. Mater. Chem. A, 2014, 2, (7), pp. 22662274.
    20. 20)
      • 5. Chi, Q., Ma, T., Zhang, Y., et al: ‘Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanofibers’, J. Mater. Chem. A, 2017, 5, (32), pp. 1675716766.
    21. 21)
      • 116. Tong, W., Zhang, Y., Yu, L., et al: ‘Amorphous TiO2-coated reduced graphene oxide hybrid nanostructures for polymer composites with low dielectric loss’, Chem. Phys. Lett., 2015, 638, pp. 4346.
    22. 22)
      • 160. Pertsev, N.A., Zembilgotov, A.G., Hoffmann, S., et al: ‘Ferroelectric thin films grown on tensile substrates: renormalization of the Curie–Weiss law and apparent absence of ferroelectricity’, J. Appl. Phys., 1999, 85, (3), pp. 16981701.
    23. 23)
      • 40. Devi, P.I., Ramachandran, K.: ‘Dielectric studies on hybridised PVDF–ZnO nanocomposites’, J. Exp. Nanosci., 2011, 6, (3), pp. 281293.
    24. 24)
      • 91. Li, K., Tong, L., Yang, R., et al: ‘In-situ preparation and dielectric properties of silver-polyarylene ether nitrile nanocomposite films’, J. Mater. Sci., Mater. Electron., 2016, 27, (5), pp. 45594565.
    25. 25)
      • 71. Liu, M., Xu, M., Huang, X., et al: ‘Enhanced properties of phthalonitrile-terminated polyarylene ether nitriles embedded with hybrid MWCNT-boehmite nanocomposites’, Polym. Compos., 2015, 36, (12), pp. 21932202.
    26. 26)
      • 104. Zhang, Z., Gu, Y., Wang, S., et al: ‘Enhancement of dielectric and electrical properties in BT/SiC/PVDF three-phase composite through microstructure tailoring’, Compos. A Appl. Sci. Manuf., 2015, 74, pp. 8895.
    27. 27)
      • 108. Liu, H., Luo, S., Yu, S., et al: ‘Flexible BaTiO3 nf-Ag/PVDF nanocomposite films with high dielectric constant and energy density’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 757763.
    28. 28)
      • 37. Bi, J., Gu, Y., Zhang, Z., et al: ‘Core–shell SiC/SiO2 whisker reinforced polymer composite with high dielectric permittivity and low dielectric loss’, Mater. Des., 2016, 89, pp. 933940.
    29. 29)
      • 46. Jia, Q., Huang, X., Wang, G., et al: ‘Mos2 nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications’, J. Phys. Chem. C, 2016, 120, (19), pp. 1020610214.
    30. 30)
      • 118. Chen, G.X., Zhang, S., Zhou, Z., et al: ‘Dielectric properties of poly(vinylidene fluoride) composites based on Bucky gels of carbon nanotubes with ionic liquids’, Polym. Compos., 2015, 36, (1), pp. 94101.
    31. 31)
      • 120. Maity, N., Mandal, A., Nandi, A.K.: ‘Interface engineering of ionic liquid integrated graphene in poly(vinylidene fluoride) matrix yielding magnificent improvement in mechanical, electrical and dielectric properties’, Polymer, 2015, 65, pp. 154167.
    32. 32)
      • 107. Dash, S., Choudhary, R.N.P., Goswami, M.N.: ‘Modification of ferroelectric and resistive properties of (Bi0.5Na0.5)(Nb0.5Fe0.5)O3 –PVDF composite’, J. Polym. Res., 2015, 22, (4), p. 54.
    33. 33)
      • 111. Ehrhardt, C., Fettkenhauer, C., Glenneberg, J., et al: ‘Enhanced dielectric properties of sol–gel-BaTiO3/P(VDF-HFP) composite films without surface functionalization’, RSC Adv., 2014, 4, (76), pp. 4032140329.
    34. 34)
      • 158. Samara, G.A.: ‘Pressure dependence of the dielectric properties and phase transitions of poly(vinylidene fluoride) (PVDF) and a copolymer with trifluoroethylene’, J. Polym. Sci. B Polym. Lett., 1989, 27, (1), pp. 3951.
    35. 35)
      • 59. Yaqoob, U., Chung, G.S.: ‘Effect of surface treated MWCNTs and BaTiO3 nanoparticles on the dielectric properties of a P(VDF-TrFE) matrix’, J. Alloys Compd., 2017, 695, pp. 12311236.
    36. 36)
      • 63. Saxena, A., Sadhana, R., Rao, V.L., et al: ‘Synthesis and properties of poly(arylene ether nitrile) copolymers’, Polym. Bull., 2003, 50, (4), pp. 219226.
    37. 37)
      • 60. Guo, Q., Xue, Q., Wu, T., et al: ‘Excellent dielectric properties of PVDF-based composites filled with carbonized PAN/PEG copolymer fibers’, Compos. A Appl. Sci. Manuf., 2016, 87, pp. 4653.
    38. 38)
      • 12. Johnson, R.W., Evans, J.L., Jacobsen, P., et al: ‘The changing automotive environment: high-temperature electronics’, IEEE Trans. Electron. Packag. Manuf., 2004, 27, (3), pp. 164176.
    39. 39)
      • 33. Tang, H., Zhou, Z., Sodano, H.A.: ‘Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites’, ACS Appl. Mater. Interfaces, 2014, 6, (8), pp. 54505455.
    40. 40)
      • 134. Jin, F., Feng, M., Huang, X., et al: ‘Effect of SiO2 grafted MWCNTs on the mechanical and dielectric properties of PEN composite films’, Appl. Surf. Sci., 2015, 357, pp. 704711.
    41. 41)
      • 79. Yang, Y., Sun, H., Zhu, B., et al: ‘Enhanced dielectric performance of three phase percolative composites based on thermoplastic-ceramic composites and surface modified carbon nanotube’, Appl. Phys. Lett., 2015, 106, (1), p. 012902.
    42. 42)
      • 29. Deepa, K.S., Shaiju, P., Sebastian, M.T., et al: ‘Poly(vinylidene fluoride)-La0.5Sr0.5CoO(3−delta) composites: the influence of LSCO particle size on the structure and dielectric properties’, Phys. Chem. Chem. Phys., 2014, 16, (32), pp. 1700817017.
    43. 43)
      • 153. Xu, H.P., Xie, H.Q., Yang, D.D., et al: ‘Novel dielectric behaviors in PVDF-based semiconductor composites’, J. Appl. Polym. Sci., 2011, 122, (5), pp. 34663473.
    44. 44)
      • 101. Jayalakshmy, M.S., Philip, J.: ‘Pyroelectric figures of merit and associated properties of LiTaO3/poly vinylidene difluoride nanocomposites for thermal/infrared sensing’, Sens. Actuators A, Phys., 2014, 206, pp. 121126.
    45. 45)
      • 143. Zhang, Z., Yuan, L., Qiang, Z., et al: ‘Flame retarding high-k composites with low dielectric loss based on unique multifunctional coated multiwalled carbon nanotubes and cyanate ester’, Ind. Eng. Chem. Res., 2015, 54, (3), pp. 938948.
    46. 46)
      • 163. Zhang, L., Wu, P., Li, Y., et al: ‘Preparation process and dielectric properties of Ba0.5Sr0.5TiO3–P(VDF–CTFE) nanocomposites’, Compos. B Eng., 2014, 56, pp. 284289.
    47. 47)
      • 92. Huang, X., Feng, M., Liu, X.: ‘Design of bristle-like TiO2–MWCNT nanotubes to improve the dielectric and interfacial properties of polymer-based composite films’, RSC Adv., 2014, 4, (10), p. 4985.
    48. 48)
      • 149. Iredale, R.J., Ward, C., Hamerton, I.: ‘Modern advances in bismaleimide resin technology: a 21st century perspective on the chemistry of addition polyimides’, Prog. Polym. Sci., 2017, 69, pp. 121.
    49. 49)
      • 70. Feng, M., Huang, X., Pu, Z., et al: ‘Dielectric and mechanical properties of three-component Al2O3/MWCNTs/polyarylene ether nitrile micro-nanocomposite’, J. Mater. Sci., Mater. Electron., 2014, 25, (3), pp. 13931399.
    50. 50)
      • 69. Zhan, Y., Fan, Y., Pan, Y., et al: ‘Construction of advanced poly(arylene ether nitrile)/multi-walled carbon nanotubes nanocomposites by controlling the precise interface’, J. Mater. Sci., 2015, 51, (4), pp. 20902100.
    51. 51)
      • 22. Salimi, A., Yousefi, A.A.: ‘Analysis method’, Polym. Test., 2003, 22, (6), pp. 699704.
    52. 52)
      • 35. Cho, S., Lee, J.S., Jang, J.: ‘Enhanced crystallinity, dielectric, and energy harvesting performances of surface-treated barium titanate hollow nanospheres/PVDF nanocomposites’, Adv. Mater. Interfaces, 2015, 2, (10), p. 1500098.
    53. 53)
      • 82. Chi, Q.G., Dong, J.F., Zhang, C.H., et al: ‘Nano iron oxide-deposited calcium copper titanate/polyimide hybrid films induced by an external magnetic field: toward a high dielectric constant and suppressed loss’, J. Mater. Chem. C, 2016, 4, (35), pp. 81798188.
    54. 54)
      • 156. Hu, G., Gao, F., Kong, J., et al: ‘Preparation and dielectric properties of poly(vinylidene fluoride)/Ba0.6Sr0.4TiO3 composites’, J. Alloys Compd., 2015, 619, pp. 686692.
    55. 55)
      • 19. von Seggern, H., Fedosov, S.N.: ‘Conductivity-induced polarization buildup in poly(vinylidene fluoride)’, Appl. Phys. Lett., 2002, 81, (15), pp. 28302832.
    56. 56)
      • 65. Tang, H., Wang, P., Zheng, P., et al: ‘Core-shell structured BaTiO3@polymer hybrid nanofiller for poly(arylene ether nitrile) nanocomposites with enhanced dielectric properties and high thermal stability’, Compos. Sci. Technol., 2016, 123, pp. 134142.
    57. 57)
      • 89. Long, Y., Pu, Z., Huang, X., et al: ‘Effect of CuPc@MWCNTs on rheological, thermal, mechanical and dielectric properties of polyarylene ether nitriles (PEN) terminated with phthalonitriles’, J. Polym. Res., 2014, 21, (9), p. 525.
    58. 58)
      • 4. Jiao, Y., Yuan, L., Liang, G., et al: ‘Dispersing carbon nanotubes in the unfavorable phase of an immiscible reverse-phase blend with Haake instrument to fabricate high-k nanocomposites with extremely low dielectric loss and percolation threshold’, Chem. Eng. J., 2016, 285, pp. 650659.
    59. 59)
      • 64. Zhan, Y., Long, Z., Wan, X., et al: ‘Enhanced dielectric permittivity and thermal conductivity of hexagonal boron nitride/poly(arylene ether nitrile) composites through magnetic alignment and mussel inspired co-modification’, Ceram. Int., 2017, 43, (15), pp. 1210912119.
    60. 60)
      • 141. Xu, C., Yuan, L., Liang, G., et al: ‘Building a poly(epoxy propylimidazolium ionic liquid)/graphene hybrid through πcation–π interaction for fabricating high-k polymer composites with low dielectric loss and percolation threshold’, J. Mater. Chem. C, 2016, 4, (15), pp. 31753184.
    61. 61)
      • 147. Wang, B., Jiao, Y., Gu, A., et al: ‘Dielectric properties and mechanism of composites by superposing expanded graphite/cyanate ester layer with carbon nanotube/cyanate ester layer’, Compos. Sci. Technol., 2014, 91, pp. 815.
    62. 62)
      • 146. Wang, B., Qin, D., Liang, G., et al: ‘High-k materials with low dielectric loss based on two superposed gradient carbon nanotube/cyanate ester composites’, J. Phys. Chem. C, 2013, 117, (30), pp. 1548715495.
    63. 63)
      • 81. Wang, J., Qi, S., Sun, Y., et al: ‘Dielectric behavior of a flexible three-phase polyimide/BaTiO3/multi-walled carbon nanotube composite film’, Funct. Mater. Lett., 2016, 09, (01), p. 1650006.
    64. 64)
      • 164. Aepuru, R., Panda, H.S.: ‘Electric-potential-driven pressure-sensing observation in new hollow radial ZnO and their heterostructure with carbon’, J. Phys. Chem. C, 2016, 120, (9), pp. 48134823.
    65. 65)
      • 47. Zhang, W., Zhou, Z., Li, Q., et al: ‘Controlled dielectric properties of polymer composites from coating multiwalled carbon nanotubes with octa-acrylate silsesquioxane through Diels–Alder cycloaddition and atom transfer radical polymerization’, Ind. Eng. Chem. Res., 2014, 53, (16), pp. 66996707.
    66. 66)
      • 62. Li, S.-L., Dou, R., Shao, Y., et al: ‘Effect of the MWCNTs selective localization on the dielectric properties for PVDF/PS/HDPE ternary blends with in situ formed core–shell structure’, RSC Adv., 2016, 6, (63), pp. 5849358500.
    67. 67)
      • 100. Adireddy, S., Puli, V.S., Sklare, S.C., et al: ‘PVDF–basrtio3 nanocomposites for flexible electrical energy storage devices’, Emerging Mater. Res., 2014, 3, (6), pp. 265270.
    68. 68)
      • 9. Maurya, D., Sun, F.C., Alpay, S.P., et al: ‘A new method for achieving enhanced dielectric response over a wide temperature range’, Sci. Rep., 2015, 5, p. 15144.
    69. 69)
      • 10. Tan, Q., Irwin, P., Cao, Y.: ‘Advanced dielectrics for capacitors’, IEEJ Trans. Fundam. Mater., 2006, 126, (11), pp. 11531159.
    70. 70)
      • 42. Khodaparast, P., Ounaies, Z.: ‘Influence of dispersion states on the performance of polymer-based nanocomposites’, Smart Mater. Struct., 2014, 23, (10), p. 104004.
    71. 71)
      • 154. Xu, H.P., Dang, Z.M., Bing, N.C., et al: ‘Temperature dependence of electric and dielectric behaviors of Ni/polyvinylidene fluoride composites’, J. Appl. Phys., 2010, 107, (3), p. 034105.
    72. 72)
      • 13. Weimer, J.A.: ‘Electrical power technology for the more electric aircraft’. Digital Avionics Systems Conf., 1993. 12th DASC., AIAA/IEEE. IEEE, Fort Worth, TX, USA, 1993, pp. 445450.
    73. 73)
      • 138. Zheng, L., Liang, G., Gu, A., et al: ‘Unique pure barium titanate foams with three-dimensional interconnecting pore channels and their high-k cyanate ester resin composites at very low barium titanate loading’, J. Mater. Chem. C, 2016, 4, (45), pp. 1065410663.
    74. 74)
      • 165. Saji, J., Khare, A., Mahapatra, S.P.: ‘Impedance and dielectric spectroscopy of nano-graphite reinforced silicon elastomer nanocomposites’, Fibers Polym., 2015, 16, (4), pp. 883893.
    75. 75)
      • 80. Zhan, J.-Y., Tian, G.-F., Wu, Z.-P., et al: ‘Preparation of polyimide/BaTiO3/Ag nanocomposite films via in situ technique and study of their dielectric behavior’, Chin. J. Polym. Sci., 2014, 32, (4), pp. 424431.
    76. 76)
      • 74. Weng, L., Xia, Q.-S., Yan, L.-W., et al: ‘In situ preparation of polyimide/titanium carbide composites with enhanced dielectric constant’, Polym. Compos., 2016, 37, (1), pp. 125130.
    77. 77)
      • 98. Srivastava, A., Maiti, P., Kumar, D., et al: ‘Mechanical and dielectric properties of CaCu3Ti4O12 and La doped CaCu3Ti4O12 poly(vinylidene fluoride) composites’, Compos. Sci. Technol., 2014, 93, pp. 8389.
    78. 78)
      • 17. Guan, F., Pan, J., Wang, J., et al: ‘Crystal orientation effect on electric energy storage in poly(vinylidene fluoride-co-hexafluoropropylene) copolymers’, Macromolecules, 2010, 43, (1), pp. 384392.
    79. 79)
      • 97. Zhang, Y., Li, L., Wang, B., et al: ‘Influence of coupling agent on microcosmic morphology and dielectric properties of energy-storage nanocomposite’, J. Mater. Sci. Mater. Electron., 2013, 25, (2), pp. 805810.
    80. 80)
      • 51. Deshmukh, K., Joshi, G.M.: ‘Novel nanocomposites of graphene oxide reinforced poly (3,4-ethylenedioxythiophene)-block-poly (ethylene glycol) and polyvinylidene fluoride for embedded capacitor applications’, RSC Adv., 2014, 4, (71), p. 37954.
    81. 81)
      • 167. Yu, J., Wu, W., Dai, D., et al: ‘Crystal structure transformation and dielectric properties of polymer composites incorporating zinc oxide nanorods’, Macromol. Res., 2013, 22, (1), pp. 1925.
    82. 82)
      • 49. Sun, J., Xue, Q., Chu, L., et al: ‘Ultra-high dielectric constant of poly(vinylidene fluoride) composites filled with hydroxyl modified graphite powders’, Polym. Compos., 2016, 37, (2), pp. 327333.
    83. 83)
      • 159. Fang, H., Li, Q., Yang, Z., et al: ‘Effects of pre-polarization on the dielectric and piezoelectric properties of 0–3 type PIN–PMN–PT/PVDF composites’, J. Mater. Sci. Mater. Electron., 2015, 26, (9), pp. 64276433.
    84. 84)
      • 27. Sarkar, S., Garain, S., Mandal, D., et al: ‘Electro-active phase formation in PVDF–BiVO4 flexible nanocomposite films for high energy density storage application’, RSC Adv., 2014, 4, (89), pp. 4822048227.
    85. 85)
      • 135. Liu, X., Li, Y., Liu, Y., et al: ‘Performance and microstructure characteristics in polyimide/nano-aluminum composites’, Surf. Coat. Technol., 2017, 320, pp. 103108.
    86. 86)
      • 130. Xu, N., Xiao, X., Yang, H., et al: ‘Enhanced dielectric constant and suppressed dielectric loss of ternary composites based on Ag-P(VDF-HFP) matrix and TiO2 nanowires’, Ceram. Int., 2016, 42, (10), pp. 1247512481.
    87. 87)
      • 132. Wan, X., Zhan, Y., Zeng, G., et al: ‘Nitrile functionalized halloysite nanotubes/poly(arylene ether nitrile) nanocomposites: interface control, characterization, and improved properties’, Appl. Surf. Sci., 2017, 393, pp. 110.
    88. 88)
      • 93. Jaleh, B., Jabbari, A.: ‘Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films’, Appl. Surf. Sci., 2014, 320, pp. 339347.
    89. 89)
      • 86. Chen, Y., Lin, B., Zhang, X., et al: ‘Enhanced dielectric properties of amino-modified-CNT/polyimide composite films with a sandwich structure’, J. Mater. Chem. A, 2014, 2, (34), p. 14118.
    90. 90)
      • 106. Niu, Y., Yu, K., Bai, Y., et al: ‘Fluorocarboxylic acid-modified barium titanate/poly(vinylidene fluoride) composite with significantly enhanced breakdown strength and high energy density’, RSC Adv., 2015, 5, (79), pp. 6459664603.
    91. 91)
      • 75. Wang, Y., Wu, X., Feng, C., et al: ‘Improved dielectric properties of surface modified BaTiO3/polyimide composite films’, Microelectron. Eng., 2016, 154, pp. 1721.
    92. 92)
      • 131. Pu, Z., Tong, L., Long, Y., et al: ‘Composites of core/shell-structured copper-phthalocyanine-decorated TiO2 particles embedded in poly(arylene ether nitrile) matrix with enhanced dielectric properties’, J. Electron. Mater., 2014, 43, (7), pp. 25972606.
    93. 93)
      • 76. Lai, M., Kou, S., Yu, S., et al: ‘High permittivity induced by interaction between PI matrix and graphite oxide filler’, Chem. Phys. Lett., 2014, 612, pp. 280284.
    94. 94)
      • 110. Luo, H., Ma, C., Zhou, X., et al: ‘Interfacial design in dielectric nanocomposite using liquid-crystalline polymers’, Macromolecules, 2017, 50, (13), pp. 51325137.
    95. 95)
      • 127. Tong, W., Zhang, Y., Zhang, Q., et al: ‘Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface’, Carbon, 2015, 94, pp. 590598.
    96. 96)
      • 112. Liu, F., Huo, R., Huang, X., et al: ‘Crystalline properties, dielectric response and thermal stability of in-situ reduced graphene oxide/poly(vinylidene fluoride) nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (4), pp. 14461454.
    97. 97)
      • 58. Li, Y., Shi, Y., Cai, F., et al: ‘Graphene sheets segregated by barium titanate for poly(vinylidene fluoride) composites with high dielectric constant and ultralow loss tangent’, Compos. A Appl. Sci. Manuf., 2015, 78, pp. 318326.
    98. 98)
      • 148. Zhang, X., Yuan, L., Guan, Q., et al: ‘Greatly improving energy storage density and reducing dielectric loss of carbon nanotube/cyanate ester composites through building a unique tri-layered structure with mica paper’, J. Mater. Chem. A, 2017, 5, (41), pp. 2190921918.
    99. 99)
      • 137. Buckley, C.P., Harding, J., Hou, J.P., et al: ‘Deformation of thermosetting resins at impact rates of strain. Part I: experimental study’, J. Mech. Phys. Solids, 2001, 49, (7), pp. 15171538.
    100. 100)
      • 15. Liu, M., Xu, M., Tong, L., et al: ‘Nitrile functionalized Al2O3 reinforced polyarylene ether nitriles terminated with phthalonitrile composites’, J. Polym. Res., 2014, 21, (4), p. 414.
    101. 101)
      • 152. Kadiroglu, U., Abaci, U., Yuksel Guney, H.: ‘Effects of B2O3 addition on structural and dielectric properties of PVDF’, Polym. Eng. Sci., 2014, 54, (11), pp. 25362543.
    102. 102)
      • 34. Liu, S., Xue, S., Zhang, W., et al: ‘Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes’, J. Mater. Chem. A, 2014, 2, (42), pp. 1804018046.
    103. 103)
      • 139. Zheng, L., Yuan, L., Guan, Q., et al: ‘High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics’, Appl. Surf. Sci., 2018, 427, (Part A), pp. 10461054.
    104. 104)
      • 151. Ramani, R., Das, V., Singh, A., et al: ‘Free volume study on the origin of dielectric constant in a fluorine-containing polyimide blend: poly(vinylidene fluoride-co-hexafluoro propylene)/poly(ether imide)’, J. Phys. Chem. B, 2014, 118, (42), pp. 1228212296.
    105. 105)
      • 14. Hergenrother, P.M.: ‘The use, design, synthesis, and properties of high performance/high temperature polymers: an overview’, High Perform. Polym., 2016, 15, (1), pp. 345.
    106. 106)
      • 67. Jin, F., Feng, M., Jia, K., et al: ‘Aminophenoxyphthalonitrile modified MWCNTs/polyarylene ether nitriles composite films with excellent mechanical, thermal, dielectric properties’, J. Mater. Sci. Mater. Electron., 2015, 26, (7), pp. 51525160.
    107. 107)
      • 103. Chen, T., Tang, Q., Wang, B., et al: ‘Dielectric and magnetic properties of poly (vinylidene fluoride) composites doped with pomegranate-like PPY@NiFe2O4 nanospheres’, Mater. Lett., 2015, 159, pp. 413416.
    108. 108)
      • 18. Mizutani, T., Yamada, T., Ieda, M.: ‘Thermally stimulated currents in polyvinylidene fluoride. I. Unstretched alpha-form PVDF’, J. Phys. D Appl. Phys., 1981, 14, (6), p. 1139.
    109. 109)
      • 23. Vacche, Dalle, S., Oliveira, , F., Leterrier, Y, et al: ‘Effect of silane coupling agent on the morphology, structure, and properties of poly(vinylidene fluoride–trifluoroethylene)/BaTiO3 composites’, J. Mater. Sci., 2014, 49, (13), pp. 45524564.
    110. 110)
      • 44. Aepuru, R., Panda, H.S.: ‘Adsorption of charge carriers on radial zinc oxide and the study of their stability and dielectric behavior in poly(vinylidene fluoride)’, J. Phys. Chem. C, 2014, 118, (33), pp. 1886818877.
    111. 111)
      • 16. Pooley, C.M., Tabor, D.: ‘Friction and molecular structure: the behaviour of some thermoplastics’, Proc. R. Soc. A Math., Phys. Eng. Sci., 1972, 329, (1578), pp. 251274.
    112. 112)
      • 73. Wang, X., Chi, Q.G., Lei, Q.Q., et al: ‘Investigation on dielectric properties of the polyimide-based composite films with high permittivity’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (4), pp. 14711477.
    113. 113)
      • 85. Peng, X., Wu, Q., Jiang, S., et al: ‘High performance polyimide-Yb complex with high dielectric constant and low dielectric loss’, Mater. Lett., 2014, 133, pp. 240242.
    114. 114)
      • 21. Botelho, G., Lanceros-Mendez, S., Gonçalves, A.M., et al: ‘Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase’, J. Non-Cryst. Solids, 2008, 354, (1), pp. 7278.
    115. 115)
      • 7. Xie, B., Zhang, H., Zhang, Q., et al: ‘Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires’, J. Mater. Chem. A, 2017, 5, (13), pp. 60706078.
    116. 116)
      • 126. Arjmand, M., Ameli, A., Sundararaj, U.: ‘Employing nitrogen doping as innovative technique to improve broadband dielectric properties of carbon nanotube/polymer nanocomposites’, Macromol. Mater. Eng., 2016, 301, (5), pp. 555565.
    117. 117)
      • 48. Li, H., Chen, Z., Liu, L., et al: ‘Poly(vinyl pyrrolidone)-coated graphene/poly(vinylidene fluoride) composite films with high dielectric permittivity and low loss’, Compos. Sci. Technol., 2015, 121, pp. 4955.
    118. 118)
      • 57. Huo, X., Li, W., Zhu, J., et al: ‘Composite based on Fe3O4@BaTiO3 particles and poly(vinylidene fluoride) with excellent dielectric properties and high energy density’, J. Phys. Chem. C, 2015, 119, (46), pp. 2578625791.
    119. 119)
      • 52. Fan, B., Bedoui, F., Weigand, S., et al: ‘Conductive network and β polymorph content evolution caused by thermal treatment in carbon nanotubes-BaTiO3 hybrids reinforced poly(vinylidene fluoride) composites’, J. Phys. Chem. C, 2016, 120, (17), pp. 95119519.
    120. 120)
      • 150. Jiao, Y., Yuan, L., Liang, G., et al: ‘Facile preparation and origin of high-k carbon nanotube/poly(ether imide)/bismaleimide composites through controlling the location and distribution of carbon nanotubes’, J. Phys. Chem. C, 2014, 118, (41), pp. 2409124101.
    121. 121)
      • 43. Hoque, N.A., Thakur, P., Bala, N., et al: ‘Tunable photoluminescence emissions and large dielectric constant of the electroactive poly(vinylidene fluoride–hexafluoropropylene) thin films modified with SnO2 nanoparticles’, RSC Adv., 2016, 6, (36), pp. 2993129943.
    122. 122)
      • 124. Zhu, J., Li, W., Huo, X., et al: ‘An ultrahigh dielectric constant composite based on polyvinylidene fluoride and polyethylene glycol modified ferroferric oxide’, J. Phys. D Appl. Phys., 2015, 48, (35), p. 355301.
    123. 123)
      • 2. Huang, X., Jiang, P.: ‘Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications’, Adv. Mater., 2015, 27, (3), pp. 546554.
    124. 124)
      • 144. Zheng, L., Yuan, L., Guan, Q., et al: ‘Fabrication and origin of asymmetric poly(vinylidene fluoride)-carbon nanotube/cyanate ester materials with high dielectric constant and low dielectric loss through building double-layered structure’, High Volt., 2017, 2, (1), pp. 3238.
    125. 125)
      • 24. Shaohui, L., Jiwei, Z., Jinwen, W., et al: ‘Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers’, ACS Appl. Mater. Interfaces, 2014, 6, (3), pp. 15331540.
    126. 126)
      • 166. Nayak, S., Chaki, T.K., Khastgir, D.: ‘Development of flexible piezoelectric poly(dimethylsiloxane)–BaTiO3 nanocomposites for electrical energy harvesting’, Ind. Eng. Chem. Res., 2014, 53, (39), pp. 1498214992.
    127. 127)
      • 66. Wang, Z., Yang, W., Liu, X.: ‘Electrical properties of poly(arylene ether nitrile)/graphene nanocomposites prepared by in situ thermal reduction route’, J. Polym. Res., 2014, 21, (2), p. 358.
    128. 128)
      • 155. Gaur, M.S., Indolia, A.P.: ‘Thermally stimulated dielectric properties of polyvinylidenefluoride–zinc oxide nanocomposites’, J. Therm. Anal. Calorimetry, 2010, 103, (3), pp. 977985.
    129. 129)
      • 1. Dang, Z.M., Yuan, J.K., Zha, J.W., et al: ‘Fundamentals, processes and applications of high-permittivity polymer–matrix composites’, Prog. Mater. Sci., 2012, 57, (4), pp. 660723.
    130. 130)
      • 145. Wu, H., Gu, A., Liang, G., et al: ‘Novel permittivity gradient carbon nanotubes/cyanate ester composites with high permittivity and extremely low dielectric loss’, J. Mater. Chem., 2011, 21, (38), p. 14838.
    131. 131)
      • 45. Thakur, P., Kool, A., Bagchi, B., et al: ‘In situ synthesis of Ni(OH)2 nanobelt modified electroactive poly(vinylidene fluoride) thin films: remarkable improvement in dielectric properties’, Phys. Chem. Chem. Phys., 2015, 17, (19), pp. 1308213091.
    132. 132)
      • 94. Su, Y.L., Sun, C., Zhang, W.Q., et al: ‘Fabrication and dielectric properties of Na0.5Bi0.5Cu3Ti4O12/poly(vinylidene fluoride) composites’, J. Mater. Sci., 2013, 48, (23), pp. 81478152.
    133. 133)
      • 6. Romann, T., Anderson, E., Pikma, P., et al: ‘Reactions at graphene tetracyanoborate ionic liquid interface – new safety mechanisms for supercapacitors and batteries’, Electrochem. Commun., 2017, 74, pp. 3841.
    134. 134)
      • 28. Singh, P., Borkar, H., Singh, B.P., et al: ‘Ferroelectric polymer-ceramic composite thick films for energy storage applications’, AIP Adv., 2014, 4, (8), p. 087117.
    135. 135)
      • 142. Zhao, L., Yuan, L., Liang, G., et al: ‘Significantly enhanced dielectric properties and energy storage density for high-k cyanate ester nanocomposites through building good dispersion of pristine carbon nanotubes in a matrix based on in situ non-covalent interaction with phenolphthalein poly(ether sulfone)’, RSC Adv., 2015, 5, (115), pp. 9463594644.
    136. 136)
      • 68. Pu, Z., Jia, K., Liu, X.: ‘Covalent grafting of a-CNTs on copper phthalocyanine for the preparation of PEN nanocomposites with high dielectric constant and high thermal stability’, J. Mater. Sci. Mater. Electron., 2015, 26, (11), pp. 89228932.
    137. 137)
      • 83. Yoon, H.W., Bok, C., Park, N.K., et al: ‘Enhanced dielectric properties of polyimide/BaTiO3 nanocomposite by embedding the polypyrrole@polyimide core-shell nanoparticles’, Macromol. Res., 2017, 25, (3), pp. 290296.
    138. 138)
      • 129. Zhou, W., Chen, Q., Sui, X., et al: ‘Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites’, Compos. A Appl. Sci. Manuf., 2015, 71, pp. 184191.
    139. 139)
      • 8. Yu, S., Qin, F., Wang, G.: ‘Improving the dielectric properties of poly(vinylidene fluoride) composites by using poly(vinyl pyrrolidone)-encapsulated polyaniline nanorods’, J. Mater. Chem. C, 2016, 4, (7), pp. 15041510.
    140. 140)
      • 11. Lu, J., Wong, C.: ‘Recent advances in high-k nanocomposite materials for embedded capacitor applications’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 13221328.
    141. 141)
      • 117. Li, X., Xu, W., Zhang, Y., et al: ‘Chemical grafting of multi-walled carbon nanotubes on metal phthalocyanines for the preparation of nanocomposites with high dielectric constant and low dielectric loss for energy storage application’, RSC Adv., 2015, 5, (64), pp. 5154251548.
    142. 142)
      • 90. Akhter, T., Mun, S.C., Saeed, S., et al: ‘Enhancing the dielectric properties of highly compatible new polyimide/γ-ray irradiated MWCNT nanocomposites’, RSC Adv., 2015, 5, (87), pp. 7118371189.
    143. 143)
      • 87. Zhang, Z., Gu, Y., Bi, J., et al: ‘Sic@SiO2 core@shell filler reinforced polymer composites with high dielectric permittivity and low loss’, Mater. Lett., 2015, 160, pp. 1619.
    144. 144)
      • 157. Zhu, H., Liu, Z., Wang, F., et al: ‘Influence of shell thickness on the dielectric properties of composites filled with Ag@SiO2 nanoparticles’, RSC Adv., 2016, 6, (69), pp. 6463464639.
    145. 145)
      • 32. Parizi, S.S., Mellinger, A., Caruntu, G.: ‘Ferroelectric barium titanate nanocubes as capacitive building blocks for energy storage applications’, ACS Appl. Mater. Interfaces, 2014, 6, (20), pp. 1750617517.
    146. 146)
      • 114. Yang, K., Huang, X., Fang, L., et al: ‘Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold’, Nanoscale, 2014, 6, (24), pp. 1474014753.
    147. 147)
      • 95. Liu, S., Zhai, J.: ‘A small loading of surface-modified Ba0.6Sr0.4TiO3 nanofiber-filled nanocomposites with enhanced dielectric constant and energy density’, RSC Adv., 2014, 4, (77), pp. 4097340979.
    148. 148)
      • 54. Yang, L., Qiu, J., Ji, H., et al: ‘Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites’, Compos. A Appl. Sci. Manuf., 2014, 65, pp. 125134.
    149. 149)
      • 162. Xu, N., Hu, L., Zhang, Q., et al: ‘Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles’, ACS Appl. Mater. Interfaces, 2015, 7, (49), pp. 2737327381.
    150. 150)
      • 26. Luo, B., Wang, X., Wang, Y., et al: ‘Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss’, J. Mater. Chem. A, 2014, 2, (2), pp. 510519.
    151. 151)
      • 122. Li, Y., Fan, M., Wu, K., et al: ‘Polydopamine coating layer on graphene for suppressing loss tangent and enhancing dielectric constant of poly(vinylidene fluoride)/graphene composites’, Compos. A Appl. Sci. Manuf., 2015, 73, pp. 8592.
    152. 152)
      • 119. Guo, Q., Xue, Q., Sun, J., et al: ‘Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids’, Nanoscale, 2015, 7, (8), pp. 36603667.
    153. 153)
      • 121. Tsonos, C.: ‘Multifunctional nanocomposites of poly(vinylidene fluoride) reinforced by carbon nanotubes and magnetite nanoparticles’, Express Polym. Lett., 2015, 9, (12), pp. 11041118.
    154. 154)
      • 77. Xu, W., Ding, Y., Jiang, S., et al: ‘Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning’, Eur. Polym. J., 2014, 59, pp. 129135.
    155. 155)
      • 36. Liu, J., Luo, Y., Wang, Y., et al: ‘Bi2s3/poly(vinylidene fluoride) composite with high dielectric constant and unusual low dielectric loss based on preferentially oriented fillers’, RSC Adv., 2015, 5, (117), pp. 9625896264.
    156. 156)
      • 123. Zhang, L., Yuan, S., Chen, S., et al: ‘Preparation and dielectric properties of core–shell structured Ag@polydopamine/poly(vinylidene fluoride) composites’, Compos. Sci. Technol., 2015, 110, pp. 126131.
    157. 157)
      • 109. Wu, P., Zhang, L., Shan, X.: ‘Microstructure and dielectric response of BaSrTiO3/P(VDF-CTFE) nanocomposites’, Mater. Lett., 2015, 159, pp. 7275.
    158. 158)
      • 84. Yang, Y., Sun, H., Yin, D., et al: ‘High performance of polyimide/CaCu3Ti4O12@Ag hybrid films with enhanced dielectric permittivity and low dielectric loss’, J. Mater. Chem. A, 2015, 3, (9), pp. 49164921.
    159. 159)
      • 136. Chen, M., Yin, J., Jin, R., et al: ‘Dielectric and mechanical properties and thermal stability of polyimide–graphene oxide composite films’, Thin Solid Films, 2015, 584, pp. 232237.
    160. 160)
      • 39. Amoresi, R.A.C., Felix, A.A., Botero, E.R., et al: ‘Crystallinity, morphology and high dielectric permittivity of NiO nanosheets filling poly(vinylidene fluoride)’, Ceram. Int., 2015, 41, (10), pp. 1473314739.
    161. 161)
      • 53. Zhou, W., Dong, L., Sui, X., et al: ‘High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ZnO particles’, J. Polym. Res., 2016, 23, (3), p. 45.
    162. 162)
      • 3. Fang, X., Liu, X., Cui, Z.-K., et al: ‘Preparation and properties of thermostable well-functionalized graphene oxide/polyimide composite films with high dielectric constant, low dielectric loss and high strength via in situ polymerization’, J. Mater. Chem. A, 2015, 3, (18), pp. 1000510012.
    163. 163)
      • 113. Zou, Y.H., Han, L., Yuan, G.L., et al: ‘Enhanced ferroelectric and dielectric properties of the P(VDF-TrFE)/Ag nanoparticles composite thin films’, J. Mater. Sci., Mater. Electron., 2014, 25, (8), pp. 34613465.
    164. 164)
      • 41. Thakur, P., Kool, A., Bagchi, B., et al: ‘The role of cerium(iii)/yttrium(iii) nitrate hexahydrate salts on electroactive β phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films’, RSC Adv., 2015, 5, (36), pp. 2848728496.
    165. 165)
      • 161. Tkacz-Śmiech, K., Koleżyński, A., Ptak, W.S.: ‘Crystal-chemical aspects of phase transitions in barium titanate’, Solid State Commun., 2003, 127, (8), pp. 557562.
    166. 166)
      • 72. Wang, L., Piao, X., Zou, H., et al: ‘High dielectric, dynamic mechanical and thermal properties of polyimide composite film filled with carbon-coated silver nanowires’, Appl. Phys. A, 2014, 118, (1), pp. 243248.
    167. 167)
      • 30. Kum-onsa, P., Thongbai, P., Maensiri, S., et al: ‘Greatly enhanced dielectric permittivity in poly(vinylidene fluoride)-based polymeric composites induced by Na1/3Ca1/3Bi1/3Cu3Ti4O12 nanoparticles’, J. Mater. Sci., Mater. Electron., 2016, 27, (9), pp. 96509655.
    168. 168)
      • 56. Tong, W., Zhang, Y., Yu, L., et al: ‘Novel method for the fabrication of flexible film with oriented arrays of graphene in poly(vinylidene fluoride-co-hexafluoropropylene) with low dielectric loss’, J. Phys. Chem. C, 2014, 118, (20), pp. 1056710573.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2017.0006
Loading

Related content

content/journals/10.1049/iet-nde.2017.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address