Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Advances in lead-free high-temperature dielectric materials for ceramic capacitor application

Ceramic capacitors with upper operating temperatures far beyond 200°C are essential for high-temperature electronics used in deep oil drilling, aviation, automotive industry and so on. Recent advances in existing lead-free dielectrics for potential high-temperature capacitor applications are reviewed and grouped into three categories according to the parent component of the solid solution. Their desirable temperature stabilities were summarised comprehensively. However, there are still some limitations in the current research, such as achieving low loss in a wide temperature range and maintaining stable dielectric properties with different frequencies or at different voltages. Furthermore, the successful implementation of multilayer ceramic capacitors is one of the biggest challenges, which will have far-reaching impacts on the realisation of high-temperature capacitor application in the future.

References

    1. 1)
      • 97. Wang, K., Hussain, A., Jo, W., et al: ‘Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics’, J. Am. Ceram. Soc., 2012, 95, (7), pp. 22412247.
    2. 2)
      • 37. Tinberg, D.S., Trolier-McKinstry, S.: ‘Structural and electrical characterization of xBiScO3–(1−x)BaTiO3 thin films’, J. Appl. Phys., 2007, 101, (2), p. 024112.
    3. 3)
      • 34. Bokov, A.A., Ye, Z.G.: ‘Recent progress in relaxor ferroelectrics with perovskite structure’, J. Mater. Sci., 2006, 41, (1), pp. 3152.
    4. 4)
      • 81. Sun, Y., Liu, H., Hao, H., et al: ‘Effect of oxygen vacancy on electrical property of acceptor doped BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 X8R systems’, J. Am. Ceram. Soc., 2016, 99, (9), pp. 30673073.
    5. 5)
      • 62. Li, L., Chen, J., Guo, D., et al: ‘An ultra-broad working temperature dielectric material obtained with praseodymium doped BaTiO3–(Bi0.5Na0.5)TiO3–Nb2O5 based ceramics’, Ceram. Int., 2014, 40, (8), pp. 1253912543.
    6. 6)
      • 159. Buessem, W.R., Cross, L.E., Goswami, A.K.: ‘Phenomenological theory of high permittivity in fine-grained barium titanate’, J. Am. Ceram. Soc., 1992, 75, (11), pp. 3336.
    7. 7)
      • 53. Ma, D., Chen, X., Huang, G., et al: ‘Temperature stability, structural evolution and dielectric properties of BaTiO3–Bi(Mg2/3Ta1/3)O3 perovskite ceramics’, Ceram. Int., 2015, 41, (5), pp. 71577161.
    8. 8)
      • 131. Hu, B., Zhu, M., Guo, J., et al: ‘Origin of relaxor behavior in K1/2Bi1/2TiO3–Bi(Mg1/2Ti1/2)O3 investigated by electrical impedance spectroscopy’, J. Am. Ceram. Soc., 2016, 99, (5), pp. 16371644.
    9. 9)
      • 52. Wang, T., Jin, L., Li, C., et al: ‘Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application’, J. Am. Ceram. Soc., 2015, 98, (2), pp. 559566.
    10. 10)
      • 23. Wang, Y.P., Zhou, L., Zhang, M.F., et al: ‘Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering’, Appl. Phys. Lett., 2004, 84, (10), pp. 17311733.
    11. 11)
      • 123. Sasaki, A., Chiba, T., Mamiya, Y., et al: ‘Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3 (Bi0.5K0.5)TiO3 systems’, Jpn. J. Appl. Phys., 1999, 38, (9), p. 5564.
    12. 12)
      • 46. Raengthon, N., Cann, D.P.: ‘High-K (Ba0.8Bi0.2)(Zn0.1Ti0.9)O3 ceramics for high-temperature capacitor applications’, IEEE Trans. Ultrason. Ferroelectr., 2011, 58, (9), pp. 19541958.
    13. 13)
      • 28. Yang, H., Jain, M., Suvorova, N.A., et al: ‘Temperature-dependent leakage mechanisms of Pt∕BiFeO3∕SrRuO3 thin film capacitors’, Appl. Phys. Lett., 2007, 91, (7), p. 072911.
    14. 14)
      • 110. Ma, C., Tan, X., Kleebe, H.J.: ‘In situ transmission electron microscopy study on the phase transitionsin lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics’, J. Am. Ceram. Soc., 2011, 94, (11), pp. 40404044.
    15. 15)
      • 80. Sun, Y., Liu, H., Hao, H., et al: ‘The role of Co in the BaTiO3–Na0.5Bi0.5TiO3 based X9R ceramics’, Ceram. Int., 2015, 41, (1), pp. 931939.
    16. 16)
      • 163. Emelyanov, A.Y., Pertsev, N.A., Hoffmann-Eifert, S., et al: ‘Grain-boundary effect on the Curie–Weiss law of ferroelectric ceramics and polycrystalline thin films: calculation by the method of effective medium’, J. Electroceram., 2002, 9, (1), pp. 516.
    17. 17)
      • 48. Chen, X., Chen, J., Ma, D., et al: ‘High relative permittivity, low dielectric loss and good thermal stability of BaTiO3–Bi(Mg0.5Zr0.5)O3 solid solution’, Ceram. Int., 2015, 41, (2), pp. 20812088.
    18. 18)
      • 156. Huan, Y., Wang, X., Fang, J., et al: ‘Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering’, J. Am. Ceram. Soc., 2013, 96, (11), pp. 33693371.
    19. 19)
      • 75. Dittmer, R., Anton, E.M., Jo, W., et al: ‘A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3’, J. Am. Ceram. Soc., 2012, 95, (11), pp. 35193524.
    20. 20)
      • 122. Elkechai, O., Manier, M., Mercurio, J.P.: ‘Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT-KBT) system: a structural and electrical study’, Phys. Status Solidi, 2010, 157, (2), pp. 499506.
    21. 21)
      • 152. Yoon, D.H.: ‘Tetragonality of barium titanate powder for a ceramic capacitor application’, J. Ceram. Proc. Res., 2006, 7, (4), pp. 343354.
    22. 22)
      • 56. Chen, Z., Li, G., Sun, X., et al: ‘La2o3 modified 0.4(Ba0.8Ca0.2)TiO3–0.6Bi(Mg0.5Ti0.5)O3 ceramics for high-temperature capacitor applications’, Ceram. Int., 2015, 41, (9), pp. 1105711061.
    23. 23)
      • 57. Huang, G., Chen, X., Ma, D., et al: ‘Thermally stable Ba0.8Ca0.2TiO3–Bi(Mg0.5Zr0.5)O3 solid solution with low dielectric loss in a broad temperature usage range’, J. Mater. Sci., Mater. Electron., 2016, 27, (6), pp. 65526557.
    24. 24)
      • 6. Zeb, A., Milne, S.J.: ‘High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites’, J. Mater. Sci., Mater. Electron., 2015, 26, (12), pp. 92439255.
    25. 25)
      • 9. Greenwell, R.L., Mccue, B.M., Zuo, L., et al: ‘SOI-based integrated circuits for high-temperature power electronics applications’. Applied Power Electronics Conf. and Exposition, Texas, USA, March 2011.
    26. 26)
      • 12. Matsunami, H.: ‘Current SiC technology for power electronic devices beyond Si’, Microelectron. Eng., 2006, 83, (1), pp. 24.
    27. 27)
      • 101. Ma, C., Tan, X., Dulkin, E., et al: ‘Domain structure-dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics’, J. Appl. Phys., 2010, 108, (10), p. 104105.
    28. 28)
      • 47. Wang, Y., Chen, X., Zhou, H., et al: ‘Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system’, J. Alloys Compd., 2013, 551, pp. 365369.
    29. 29)
      • 132. Zhang, M.H., Wang, K., Du, Y.J., et al: ‘High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite’, J. Am. Chem. Soc., 2017, 139, (10), pp. 38893895.
    30. 30)
      • 160. Ghosh, D., Sakata, A., Carter, J., et al: ‘Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes’, Adv. Funct. Mater., 2014, 24, (7), pp. 885896.
    31. 31)
      • 64. Bridger, K., Cooke, A.V., Schulze, W.A.: ‘High-temperature dielectric materials and capacitors made therefrom’. U.S. Patent 7697263 B2, April 2010.
    32. 32)
      • 8. Johnson, R.W., Evans, J.L., Jacobsen, P., et al: ‘The changing automotive environment: high-temperature electronics’, IEEE Trans. Electron. Packag. Manuf., 2005, 27, (3), pp. 164176.
    33. 33)
      • 42. Huang, C.C., Cann, D.P.: ‘Phase transitions and dielectric properties in Bi(Zn1/2Ti1/2)O3–BaTiO3 perovskite solid solutions’, J. Appl. Phys., 2008, 104, (2), p. 4.
    34. 34)
      • 148. Wang, K., Li, J.F.: ‘Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity’, Adv. Funct. Mater., 2010, 20, (12), pp. 19241929.
    35. 35)
      • 50. Xiong, B., Hao, H., Zhang, S., et al: ‘Dielectric behaviors of Nb2O5–Co2O3 doped BaTiO3–Bi(Mg1/2Ti1/2)O3 ceramics’, Ceram. Int., 2012, 38, pp. S45S48.
    36. 36)
      • 40. Hou, Y.D., Cui, L., Si, M.J., et al: ‘The variation of curie temperature and dielectric relaxor behaviour in the nominal (1−x)BaTiO3xBiAlO3 system’, J. Electroceram., 2012, 28, (2–3), pp. 105108.
    37. 37)
      • 124. Seifert, K.T.P., Jo, W., Rödel, J.: ‘Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics’, J. Am. Ceram. Soc., 2010, 93, (2), pp. 13921396.
    38. 38)
      • 157. Gong, H., Wang, X., Zhang, S., et al: ‘Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs’, J. Eur. Ceram. Soc., 2014, 34, (7), pp. 17331739.
    39. 39)
      • 107. Wu, C.C., Yang, C.F.: ‘Effects of NaNbO3 concentration on the relaxor and dielectric properties of the lead-free (Na0.5Bi0.5)TiO3 ceramics’, Cryst. Eng. Comm., 2013, 15, (44), p. 9097.
    40. 40)
      • 88. Smolenskii, G.A., Isupov, V.A., Agranovskaya, A.I., et al: ‘New ferroelectrics of complex composition. IV’, Sov. Phys.–Solid State, 1961, 2, (11), p. 3.
    41. 41)
      • 147. Skidmore, T.A., Comyn, T.P., Bell, A.J., et al: ‘Phase diagram and structure–property relationships in the lead-free piezoelectric system: Na0.5K0.5NbO3–LiTaO3’, IEEE Ttrans. Ultrason. Ferroelectr., 2011, 58, (9), pp. 18191825.
    42. 42)
      • 114. Chao, L., Hou, Y., Zheng, M., et al: ‘High dense structure boosts stability of antiferroelectric phase of NanbO3 polycrystalline ceramics’, Appl. Phys. Lett., 2016, 108, (21), p. 212902.
    43. 43)
      • 89. Reichmann, K., Feteira, A., Li, M.: ‘Bismuth sodium titanate based materials for piezoelectric actuators’, Materials, 2015, 8, (12), pp. 84678495.
    44. 44)
      • 25. Wang, T.H., Tu, C.S., Chen, H.Y., et al: ‘Magnetoelectric coupling and phase transition in BiFeO3 and (BiFeO3)0.95(BaTiO3)0.05 ceramics’, J. Appl. Phys., 2011, 109, (4), p. 044101.
    45. 45)
      • 71. Zeb, A., Milne, S.J.: ‘High temperature dielectrics in the ceramic system K0.5Bi0.5TiO3–Ba(Zr0.2Ti0.8)O3–Bi(Zn2/3 Nb1/3)O3’, Ceram. Int., 2017, 43, (10), pp. 77247727.
    46. 46)
      • 15. Acosta, M., Zang, J., Jo, W., et al: ‘High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics’, J. Eur. Ceram. Soc., 2012, 32, (16), pp. 43274334.
    47. 47)
      • 144. Du, H., Zhou, W., Luo, F., et al: ‘High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3−0.96(K0.5Na0.5)NbO3’, J. Appl. Phys., 2008, 104, (4), p. 044104.
    48. 48)
      • 82. Li, L., Han, Y., Zhang, P., et al: ‘Synthesis and characterization of BaTiO3-based X9R ceramics’, J. Mater. Sci., 2009, 44, (20), pp. 55635568.
    49. 49)
      • 43. Raengthon, N., Sebastian, T., Cumming, D., et al: ‘BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications’, J. Am. Ceram. Soc., 2012, 95, (11), pp. 35543561.
    50. 50)
      • 93. Rödel, J., Jo, W., Seifert, K.T.P., et al: ‘Perspective on the development of lead-free piezoceramics’, J. Am. Ceram. Soc., 2009, 92, (6), pp. 11531177.
    51. 51)
      • 120. Zhu, M.K., Lu, P.X., Hou, Y.D., et al: ‘Effects of Fe2O3 addition on microstructure and piezoelectric properties of 0.2PZN–0.8PZT ceramics’, J. Mater. Res., 2011, 20, (10), pp. 26702675.
    52. 52)
      • 79. Sun, Y., Liu, H., Hao, H., et al: ‘Structure property relationship in BaTiO3–Na0.5Bi0.5TiO3–Nb2O5–NiO X8R system’, J. Am. Ceram. Soc., 2015, 98, (5), pp. 15741579.
    53. 53)
      • 65. Dittmer, R., Jo, W., Damjanovic, D., et al: ‘Lead-free high-temperature dielectrics with wide operational range’, J. Appl. Phys., 2011, 109, (3), p. 034107.
    54. 54)
      • 72. Cheng, H., Du, H., Zhou, W., et al: ‘Bi(Zn2/3Nb1/3)O3–(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range’, J. Am. Ceram. Soc., 2013, 96, (3), pp. 833837.
    55. 55)
      • 129. Yang, Z., Du, H., Qu, S., et al: ‘Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics’, J. Mater. Chem. A, 2016, 4, (36), pp. 1377813785.
    56. 56)
      • 161. Huan, Y., Wang, X., Fang, J., et al: ‘Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics’, J. Eur. Ceram. Soc., 2014, 34, (5), pp. 14451448.
    57. 57)
      • 32. Zhang, J., Hou, Y., Zheng, M., et al: ‘The occupation behavior of Y2O3 and its effect on the microstructure and electric properties in X7R dielectrics’, J. Am. Ceram. Soc., 2016, 99, (4), pp. 13751382.
    58. 58)
      • 142. Wu, J., Xiao, D., Zhu, J.: ‘Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries’, Chem. Rev, 2015, 115, (7), pp. 25592595.
    59. 59)
      • 16. Zang, J., Jo, W., Zhang, H., et al: ‘Bi1/2Na1/2TiO3–BaTiO3 based thick-film capacitors for high-temperature applications’, J. Eur. Ceram. Soc., 2014, 34, (1), pp. 3743.
    60. 60)
      • 133. Xu, K., Li, J., Lv, X., et al: ‘Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics’, Adv. Mater., 2016, 28, (38), pp. 85198523.
    61. 61)
      • 150. Lv, Y.G., Wang, C.L., Zhang, J.L., et al: ‘Tantalum influence on physical properties of (K0.5Na0.5)(Nb1−xTax)O3 ceramics’, Mater. Res. Bull., 2009, 44, (2), pp. 284287.
    62. 62)
      • 83. Hou, Y., Zhu, M., Gao, F., et al: ‘Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics’, J. Am. Ceram. Soc., 2010, 87, (5), pp. 847850.
    63. 63)
      • 84. Hagemann, H., Ihrig, H.: ‘Valence change and phase stability of 3d-doped BaTiO3 annealed in oxygen and hydrogen’, Phys. Rev. B, 1979, 20, (20), pp. 38713878.
    64. 64)
      • 36. Ogihara, H., Randall, C.A., Trolier-McKinstry, S.: ‘Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics’, J. Am. Ceram. Soc., 2009, 92, (1), pp. 110118.
    65. 65)
      • 104. Trolliard, G., Dorcet, V.: ‘Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: second order orthorhombic to tetragonal phase transition’, Chem. Mater., 2008, 20, (15), pp. 50745082.
    66. 66)
      • 60. Li, L., Zhang, B.: ‘The effect of bimodal model on the ultra-broad temperature stable BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 system’, Scr. Mater., 2016, 114, pp. 170174.
    67. 67)
      • 45. Raengthon, N., Brown-Shaklee, H.J., Brennecka, G.L., et al: ‘Dielectric properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–NaNbO3 solid solutions’, J. Mater. Sci., 2012, 48, (5), pp. 22452250.
    68. 68)
      • 51. Muhammad, R., Iqbal, Y.: ‘Enhanced dielectric properties in Nb-doped Bt-BMT ceramics’, Ceram. Int., 2016, 42, (16), pp. 1941319419.
    69. 69)
      • 98. Zhang, H., Groh, C., Zhang, Q., et al: ‘Large strain in relaxor/ferroelectric composite lead-free piezoceramics’, Adv. Electron. Mater., 2015, 1, (6), p. 1500018.
    70. 70)
      • 115. Chao, L., Hou, Y., Zheng, M., et al: ‘Macroscopic ferroelectricity and piezoelectricity in nanostructured NaNbO3 ceramics’, Appl. Phys. Lett., 2017, 110, (12), p. 122901.
    71. 71)
      • 59. Yao, G., Wang, X., Wu, Y., et al: ‘Nb-Doped 0.9BaTiO3–0.1(Bi0.5Na0.5)TiO3 ceramics with stable dielectric properties at high temperature’, J. Am. Ceram. Soc., 2012, 95, (2), pp. 614618.
    72. 72)
      • 33. Acosta, M., Schmitt, L.A., Molina-Luna, L., et al: ‘Core-shell lead-free piezoelectric ceramics: current status and advanced characterization of the Bi1/2Na1/2TiO3–SrTiO3 system’, J. Am. Ceram. Soc., 2015, 98, (11), pp. 34053422.
    73. 73)
      • 68. Xu, Q., Liu, H., Zhang, L., et al: ‘Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energy-storage applications’, RSC Adv., 2016, 6, (64), pp. 5928059291.
    74. 74)
      • 11. Neudeck, P.G., Okojie, R.S., Chen, L.Y.: ‘High-temperature electronics – a role for wide bandgap semiconductors?’, Proc. IEEE, 2002, 90, (6), pp. 10651076.
    75. 75)
      • 95. Zhang, S.T., Kounga, A.B., Jo, W., et al: ‘High-strain lead-free antiferroelectric electrostrictors’, Adv. Mater., 2009, 21, (46), pp. 47164720.
    76. 76)
      • 165. Ping, H., Henson, P., Johnson, R.W.: ‘Packaging technology for electronic applications in harsh high-temperature environments’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 26732682.
    77. 77)
      • 27. Zheng, T., Wu, J.: ‘Enhanced piezoelectric activity in high-temperature Bi1−xySmxLayFeO3 lead-free ceramics’, J. Mater. Chem. C, 2015, 3, (15), pp. 36843693.
    78. 78)
      • 78. Shannon, R.D.: ‘Dielectric polarizabilities of ions in oxides and fluorides’, J. Appl. Phys., 1993, 73, (1), pp. 348366.
    79. 79)
      • 158. Buessem, W.R., Cross, L.E., Goswami, A.K.: ‘Effect of two-dimensional pressure on the permittivity of fine- and coarse-grained barium titanate’, J. Am. Ceram. Soc., 1966, 49, (1), pp. 3639.
    80. 80)
      • 109. Takenaka, T., Maruyama, K.I., Sakata, K.: ‘(Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics’, Jpn. J. Appl. Phys., 1991, 30, (9B), pp. 22362239.
    81. 81)
      • 166. Watson, J., Castro, G.: ‘High-temperature electronics pose design and reliability challenges’, Analog Dialogue, 2012, 46, (2), pp. 39.
    82. 82)
      • 112. Jo, W., Granzow, T., Aulbach, E., et al: ‘Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics’, J. Appl. Phys., 2009, 105, (9), p. 094102.
    83. 83)
      • 21. Wu, J., Fan, Z., Xiao, D., et al: ‘Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures’, Prog. Mater. Sci., 2016, 84, pp. 335402.
    84. 84)
      • 153. Chen, I.W., Wang, X.H.: ‘Sintering dense nanocrystalline ceramics without final-stage grain growth’, Nature, 2000, 404, (6774), p. 168.
    85. 85)
      • 91. Aksel, E., Forrester, J.S., Jones, J.L., et al: ‘Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3’, Appl. Phys. Lett., 2011, 98, (15), p. 152901.
    86. 86)
      • 103. Dorcet, V., Trolliard, G., Boullay, P.: ‘Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 By TEM. Part I: first order rhombohedral to orthorhombic phase transition’, Chem. Mater., 2008, 20, (15), pp. 50615073.
    87. 87)
      • 67. Xu, Q., Liu, H., Song, Z., et al: ‘A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution’, J. Mater. Sci., Mater. Electron., 2015, 27, (1), pp. 322329.
    88. 88)
      • 139. Qu, B., Du, H., Yang, Z., et al: ‘Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors’, J. Am. Ceram. Soc., 2017, 100, (4), pp. 15171526.
    89. 89)
      • 5. Watson, J., Castro, G.: ‘A review of high-temperature electronics technology and applications’, J. Mater. Sci., Mater. Electron., 2015, 26, (12), pp. 92269235.
    90. 90)
      • 99. Zhang, J., Pan, Z., Guo, F.F., et al: ‘Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics’, Nat. Commun., 2015, 6, p. 6615.
    91. 91)
      • 138. Qu, B., Du, H., Yang, Z.: ‘Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability’, J. Mater. Chem. C, 2016, 4, (9), pp. 17951803.
    92. 92)
      • 140. Popper, P., Ingles, T.A.: ‘Structure and electrical properties of Bi4Ti3O12 and its application in dielectrics’, Trans. Br. Ceram. Soc., 1957, 56, p. 9.
    93. 93)
      • 54. Chen, X., Huang, G., Ma, D., et al: ‘High thermal stability and low dielectric loss of BaTiO3–Bi(Li1/3Zr2/3)O3 solid solution’, Ceram. Int., 2017, 43, (1), pp. 926929.
    94. 94)
      • 102. Sakata, K., Masuda, Y.: ‘Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3–SrTiO3 solid solution ceramics’, Ferroelectrics, 1974, 7, (1), pp. 347349.
    95. 95)
      • 119. Hou, Y.D., Cui, B., Zhu, M.K., et al: ‘Structure and electrical properties of Mn-modified Pb((Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80)O3 ceramics sintered in a protective powder atmosphere’, Mater. Sci. Eng. B, 2004, 111, (1), pp. 7781.
    96. 96)
      • 17. Randall, C.A., Ogihara, H., Kim, J.R., et al: ‘High temperature and high energy density dielectric materials’. Pulsed Power Conf., Washington DC, USA, August 2009, pp. 346351.
    97. 97)
      • 7. Sandia National LaboratoriesFirst high-temperature electronics products survey 2005’, (Sandia Corporation, 2006), pp. 143.
    98. 98)
      • 39. Cui, L., Hou, Y.D., Wang, S., et al: ‘Relaxor behavior of (Ba,Bi)(Ti,Al)O3 ferroelectric ceramic’, J. Appl. Phys., 2010, 107, (5), p. 054105.
    99. 99)
      • 127. Hou, Y., Zhu, M., Hou, L., et al: ‘Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique’, J. Cryst. Growth, 2005, 273, (3–4), pp. 500503.
    100. 100)
      • 30. Correia, T.M., McMillen, M., Rokosz, M.K., et al: ‘A lead-free and high-energy density ceramic for energy storage applications’, J. Am. Ceram. Soc., 2013, 96, (9), pp. 26992702.
    101. 101)
      • 73. Skidmore, T.A., Comyn, T.P., Milne, S.J.: ‘Dielectric and piezoelectric properties in the system: (1−x)[(Na0.5K0.5NbO3)0.93–(LiTaO3)0.07]–x[BiScO3]’, J. Am. Ceram. Soc., 2010, 93, (3), pp. 624626.
    102. 102)
      • 126. Wada, T., Fukui, A., Matsuo, Y.: ‘Preparation of (K0.5Na0.5)NbO3 ceramics by polymerized complex method and their properties’, Jpn. J. Appl. Phys., 2002, 41, (Part 1, No. 11B), pp. 70257028.
    103. 103)
      • 113. Zang, J., Li, M., Sinclair, D.C., et al: ‘Impedance spectroscopy of (Bi0.5Na0.5)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3’, J. Am. Ceram. Soc., 2014, 97, (5), pp. 15231529.
    104. 104)
      • 3. Fiedziuszko, S.J., Hunter, I.C., Itoh, T., et al: ‘Dielectric materials, devices, and circuits’, IEEE T. Microw. Theory, 2002, 50, (3), pp. 706720.
    105. 105)
      • 2. Pan, M.J., Randall, C.A.: ‘A brief introduction to ceramic capacitors’, IEEE Electr. Insul. Mag., 2010, 26, (3), pp. 4450.
    106. 106)
      • 86. Hennings, D.F.K.: ‘Dielectric materials for sintering in reducing atmospheres’, J. Eur. Ceram. Soc., 2001, 21, (10–11), pp. 16371642.
    107. 107)
      • 143. Wang, X., Wu, J., Xiao, D., et al: ‘Giant piezoelectricity in potassium-sodium niobate lead-free ceramics’, J. Am. Chem. Soc., 2014, 136, (7), pp. 29052910.
    108. 108)
      • 145. Chen, X., Chen, J., Ma, D., et al: ‘High relative permittivity, low dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3–Bi(Zn0.75W0.25)O3 solid solution’, Mater. Lett., 2015, 145, pp. 247249.
    109. 109)
      • 49. Zeb, A., Milne, S.J.: ‘Temperature-stable dielectric properties from −20°C to 430°C in the system BaTiO3–Bi(Mg0.5Zr0.5)O3’, J. Eur. Ceram. Soc., 2014, 34, (13), pp. 31593166.
    110. 110)
      • 69. Shi, J., Fan, H., Liu, X., et al: ‘Bi deficiencies induced high permittivity in lead-free BNBT–BST high-temperature dielectrics’, J. Alloys Compd., 2015, 627, pp. 463467.
    111. 111)
      • 14. Groh, C., Kobayashi, K., Shimizu, H., et al: ‘High-temperature multilayer ceramic capacitors based on 100−x(94Bi1/2Na1/2TiO3–6BaTiO3)–xK0.5Na0.5NbO3’, J. Am. Ceram. Soc., 2016, 99, (6), pp. 20402046.
    112. 112)
      • 135. Nagata, H., Tabuchi, K., Takenaka, T.: ‘Fabrication and electrical properties of multilayer ceramic actuator using lead-free (Bi1/2K1/2)TiO3’, Jpn. J. Appl. Phys., 2013, 52, (9S1), p. 09KD05.
    113. 113)
      • 61. Zhang, N., Li, L., Chen, J., et al: ‘ZnO-Doped BaTiO3–Na0.5Bi0.5TiO3–Nb2O5-based ceramics with temperature-stable high permittivity from −55°C to 375°C’, Mater. Lett., 2015, 138, pp. 228230.
    114. 114)
      • 85. Yao, G., Wang, X., Li, L.: ‘Study on occupation behavior of Y2O3 in X8R nonreducible BaTiO3-based dielectric ceramics’, Jpn. J. Appl. Phys., 2011, 50, p. 121501.
    115. 115)
      • 10. Celler, G.K., Cristoloveanu, S.: ‘Frontiers of silicon-on-insulator’, J. Appl. Phys., 2003, 93, (9), pp. 49554978.
    116. 116)
      • 26. Lv, J., Wu, J., Wu, W.: ‘Enhanced electrical properties of quenched (1–x)Bi1–ySmyFeO3xBiScO3 lead-free ceramics’, J. Phys. Chem. C, 2015, 119, (36), pp. 2110521115.
    117. 117)
      • 70. Kruea-In, C., Rujijanagul, G., Zhu, F.Y., et al: ‘Relaxor behaviour of K0.5Bi0.5TiO3–BiScO3 ceramics’, Appl. Phys. Lett., 2012, 100, (20), p. 202904.
    118. 118)
      • 58. Zeb, A., Milne, S.J.: ‘Low variation in relative permittivity over the temperature range 25–450°C for ceramics in the system (1−x)[Ba0.8Ca0.2TiO3]–x[Bi(Zn0.5Ti0.5)O3]’, J. Eur. Ceram. Soc., 2014, 34, (7), pp. 17271732.
    119. 119)
      • 141. Buhrer, C.F.: ‘Some properties of bismuth perovskites’, J. Chem. Phys., 1962, 36, (3), pp. 798803.
    120. 120)
      • 105. Jo, W., Schaab, S., Sapper, E., et al: ‘On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3’, J. Appl. Phys., 2011, 110, (7), p. 074106.
    121. 121)
      • 117. Jo, W., Erdem, E., Eichel, R.A., et al: ‘Effect of Nb-donor and Fe-acceptor dopants in (Bi1/2Na1/2)TiO3–BaTiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics’, J. Appl. Phys., 2010, 108, (1), p. 014110.
    122. 122)
      • 149. Zuo, R., Fu, J., Lv, D., et al: ‘Antimony tuned rhombohedral–orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate’, J. Am. Ceram. Soc., 2010, 93, (9), pp. 27832787.
    123. 123)
      • 76. Zhang, L., Wang, X., Liu, H., et al: ‘Structural and dielectric properties of BaTiO3–SrTiO3 ternary system ceramics’, J. Am. Ceram. Soc., 2010, 93, (4), pp. 10491055.
    124. 124)
      • 106. Li, Y., Chen, W., Zhou, J., et al: ‘Dielectric and piezoelectric properties of lead-free (Na0.5Bi0.5)TiO3–NaNbO3 ceramics’, Mater. Sci. Eng. B, 2004, 112, (1), pp. 59.
    125. 125)
      • 66. Jia, W., Hou, Y., Zheng, M., et al: ‘High-temperature dielectrics based on (1−x)(0.94Bi0.5Na0.5TiO3–0.06BaTiO3)–xNaNbO3 system’, J. Alloys Compd., 2017, 724, pp. 306315.
    126. 126)
      • 22. Zheng, T., Wu, J.: ‘Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics’, J. Mater. Chem. C, 2015, 3, (43), pp. 1132611334.
    127. 127)
      • 151. Su, C., Hao, H., Xu, Q., et al: ‘Manufacture and dielectric properties of X9R Bi-based lead-free multilayer ceramic capacitors with AgPd inner electrodes’, J. Mater. Sci., Mater Electron., 2016, 27, (6), pp. 61406149.
    128. 128)
      • 74. Zeb, A., Milne, S.J.: ‘Stability of high-temperature dielectric properties for (1–x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3 ceramics’, J. Am. Ceram. Soc., 2013, 96, (9), pp. 28872892.
    129. 129)
      • 118. Zheng, M.P., Hou, Y.D., Xie, F.Y., et al: ‘Effect of valence state and incorporation site of cobalt dopants on the microstructure and electrical properties of 0.2PZN–0.8PZT ceramics’, Acta Mater., 2013, 61, (5), pp. 14891498.
    130. 130)
      • 77. Muhammad, R., Khesro, A., Iqbal, Y.: ‘Temperature-stable high relative permittivity in Ca-doped Ba0.5Bi0.5Ti0.75Mg0.25O3 ceramics’, J. Mater. Sci., Mater. Electron., 2017, 28, (9), pp. 67636768.
    131. 131)
      • 155. Zheng, T., Wu, J.: ‘Enhanced piezoelectricity over a wide sintering temperature (400–1050°C) range in potassium sodium niobate-based ceramics by two step sintering’, J. Mater. Chem. A, 2015, 3, (13), pp. 67726780.
    132. 132)
      • 24. Wei, Y., Wang, X., Jia, J., et al: ‘Multiferroic and piezoelectric properties of 0.65BiFeO3–0.35BaTiO3 ceramic with pseudo-cubic symmetry’, Ceram. Int., 2012, 38, (4), pp. 34993502.
    133. 133)
      • 92. Ma, C., Guo, H., Tan, X.: ‘A new phase boundary in (Bi1/2Na1/2)TiO3−BaTiO3 revealed via a novel method of electron diffraction analysis’, Adv. Funct. Mater., 2013, 23, (42), pp. 52615266.
    134. 134)
      • 90. Gorfman, S., Thomas, P.A.: ‘Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3’, J. Appl. Crystallogr., 2010, 43, (6), pp. 14091414.
    135. 135)
      • 31. Zheng, P., Zhang, J.L., Tan, Y.Q., et al: ‘Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics’, Acta Mater., 2012, 60, (13–14), pp. 50225030.
    136. 136)
      • 44. Raengthon, N., Cann, D.P.: ‘High temperature electronic properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications’, J. Electroceram., 2012, 28, (2–3), pp. 165171.
    137. 137)
      • 20. The EUEU-Directive 2002/95/EC: restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)’, Off. J. Eur. Union, 2003, 46, (L37), pp. 1923.
    138. 138)
      • 130. Shao, T., Du, H., Ma, H., et al: ‘Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials’, J. Mater. Chem. A, 2017, 5, (2), pp. 554563.
    139. 139)
      • 13. Bhatnagar, M., Baliga, B.J.: ‘Comparison of 6H–SiC, 3C–SiC, and Si for power devices’, IEEE Trans. Electron. Dev., 1993, 40, (3), pp. 645655.
    140. 140)
      • 137. Gao, R., Chu, X., Huan, Y., et al: ‘Investigation on co-fired multilayer KNN-based lead-free piezoceramics’, Phys. Status Solidi A, 2014, 211, (10), pp. 23782383.
    141. 141)
      • 162. Arlt, G., Hennings, D., With, G.D.: ‘Dielectric properties of fine-grained barium titanate ceramics’, J. Appl. Phys., 1985, 58, (4), pp. 16191625.
    142. 142)
      • 96. Jo, W., Dittmer, R., Acosta, M., et al: ‘Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective’, J. Electroceram., 2012, 29, (1), pp. 7193.
    143. 143)
      • 4. Kishi, H., Mizuno, Y., Chazono, H.: ‘Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives’, Jpn. J. Appl. Phys. Inter., 2003, 42, (1), pp. 115.
    144. 144)
      • 41. Liu, M., Hao, H., Zhen, Y., et al: ‘Temperature stability of dielectric properties for xBiAlO3–(1−x)BaTiO3 ceramics’, J. Eur. Ceram. Soc., 2015, 35, (8), pp. 23032311.
    145. 145)
      • 19. Shvartsman, V.V., Lupascu, D.C., Green, D.J.: ‘Lead-free relaxor ferroelectrics’, J. Am. Ceram. Soc., 2012, 95, (1), pp. 126.
    146. 146)
      • 164. Li, B., Wang, X., Li, L., et al: ‘Dielectric properties of fine-grained BaTiO3 prepared by spark-plasma-sintering’, Mater. Chem. Phys., 2004, 83, (1), pp. 2328.
    147. 147)
      • 63. Xu, Q., Song, Z., Tang, W., et al: ‘Ultra-wide temperature stable dielectrics based on Bi0.5Na0.5TiO3–NaNbO3 system’, J. Am. Ceram. Soc., 2015, 98, (10), pp. 31193126.
    148. 148)
      • 125. Anton, E.M., Jo, W., Trodahl, J., et al: ‘Effect of K0.5Na0.5NbO3 on properties at and of the morphotropic phase boundary in Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3 ceramics’, Jpn. J. Appl. Phys., 2011, 50, (5), p. 055802.
    149. 149)
      • 94. Rödel, J., Kounga, A.B.N., Weissenberger-Eibl, M., et al: ‘Development of a roadmap for advanced ceramics: 2010–2025’, J. Eur. Ceram. Soc., 2009, 29, (9), pp. 15491560.
    150. 150)
      • 38. Lim, J.B., Zhang, S., Kim, N., et al: ‘High-temperature dielectrics in the BiScO3–BaTiO3–(K1/2Bi1/2)TiO3 ternary system’, J. Am. Ceram. Soc., 2009, 92, (3), pp. 679682.
    151. 151)
      • 134. Gao, R., Chu, X., Huan, Y., et al: ‘A study on (K, Na) NbO3 based multilayer piezoelectric ceramics micro speaker’, Smart Mater. Struct., 2014, 23, (10), p. 105018.
    152. 152)
      • 18. Stringer, C.J., Donnelly, N.J., Shrout, T.R., et al: ‘Dielectric characteristics of perovskite-structured high-temperature relaxor ferroelectrics: the BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary system’, J. Am. Ceram. Soc., 2008, 91, (6), pp. 17811787.
    153. 153)
      • 55. Zeb, A., Bai, Y., Button, T., et al: ‘Temperature-stable relative permittivity from −70°C to 500°C in (Ba0.8Ca0.2)TiO3–Bi(Mg0.5Ti0.5)O3–NaNbO3 ceramics’, J. Am. Ceram. Soc., 2014, 97, (8), pp. 24792483.
    154. 154)
      • 128. Du, H., Li, Z., Tang, F., et al: ‘Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering’, Mater. Sci. Eng. B, 2006, 131, (1–3), pp. 8387.
    155. 155)
      • 136. Kim, M.S., Jeon, S., Lee, D.S., et al: ‘Lead-free NkN-5LT piezoelectric materials for multilayer ceramic actuator’, J. Electroceram., 2008, 23, (2–4), pp. 372375.
    156. 156)
      • 1. Ogihara, H., Randall, C.A., Trolier-McKinstry, S.: ‘High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics’, J. Am. Ceram. Soc., 2009, 92, (8), pp. 17191724.
    157. 157)
      • 146. Zhu, F., Skidmore, T.A., Bell, A.J., et al: ‘Diffuse dielectric behaviour in Na0.5K0.5NbO3–LiTaO3–BiScO3 lead-free ceramics’, Mater. Chem. Phys., 2011, 129, (1–2), pp. 411417.
    158. 158)
      • 108. König, J., Spreitzer, M., Suvorov, D.: ‘Influence of the synthesis conditions on the dielectric properties in the Bi0.5Na0.5TiO3–KTaO3 system’, J. Eur. Ceram. Soc., 2011, 31, (11), pp. 19871995.
    159. 159)
      • 29. Correia, T., Stewart, M., Ellmore, A., et al: ‘Lead-free ceramics with high energy density and reduced losses for high temperature applications’, Adv. Eng. Mater., 2017, 19, (6), p. 1700019.
    160. 160)
      • 100. Liu, X., Tan, X.: ‘Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics’, Adv. Mater., 2016, 28, (3), pp. 574578.
    161. 161)
      • 116. Xu, Q., Li, T., Hao, H., et al: ‘Enhanced energy storage properties of NaNbO3 modified (Bi0.5Na0.5)TiO3 based ceramics’, J. Eur. Ceram. Soc., 2015, 35, (2), pp. 545553.
    162. 162)
      • 154. Karaki, T., Yan, K., Adachi, M.: ‘Barium titanate piezoelectric ceramics manufactured by two-step sintering’, Jpn. J. Appl. Phys., 2007, 46, (10B), pp. 70357038.
    163. 163)
      • 87. Albertsen, K., Hennings, D., Steigelmann, O.: ‘Donor-acceptor charge complex formation in barium titanate ceramics: role of firing atmosphere’, J. Electroceram., 1998, 2, (3), pp. 193198.
    164. 164)
      • 111. Zhang, S.T., Kounga, A.B., Aulbach, E., et al: ‘Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system’, Appl. Phys. Lett., 2007, 91, (11), p. 112906.
    165. 165)
      • 121. Sung, Y.S., Kim, J.M., Cho, J.H., et al: ‘Effects of Bi nonstoichiometry in (Bi0.5+xNa)TiO3 ceramics’, Appl. Phys. Lett., 2011, 98, (1), p. 012902.
    166. 166)
      • 35. Muhammad, R., Iqbal, Y., Reaney, I.M.: ‘BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications’, J. Am. Ceram. Soc., 2016, 99, (6), pp. 20892095.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2017.0003
Loading

Related content

content/journals/10.1049/iet-nde.2017.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address