Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Dielectric properties of epoxy silica and boron nitride nanocomposites and moisture/temperature influences

The epoxy resin was filled with nano-BN, surface treated, and untreated nano-SiO2. Measurements of dielectric spectroscopy cover the range of frequency from 10−2 to 105 Hz and will relate to the hydration of samples. It was observed from the results that permittivity of pure epoxy was strongly affected by the water absorptions and a bit of temperature. Then it will allow us to extract the influence of water absorption on dielectric properties and proposed a relatively reliable method by using Monte-Carlo simulation to estimate the average thickness of water shell or related relaxation peak of epoxy nanocomposites with spherical particles. At the end, the authors experimentally demonstrated the existence of two layer structure of water shell and concluded that surface treatment is able to reduce the water uptake, however, no obvious impact on modifying its effects on dielectric properties due to the limitation of thickness of tightly bonded layer. The ‘hydrophobic’ performance of BN nanocomposites is much better than silica ones, especially the no formation of water shell around the particles, and may be more suitable for application under environment with humidity.

References

    1. 1)
      • 51. Steeman, P.A., Baetsen, J.F., Maurer, F.H.: ‘Temperature dependence of the interfacial dielectric loss process in glass bead-filled polyethylene’, Polym. Eng. Sci., 1992, 32, (5), pp. 351356.
    2. 2)
      • 37. Saha, M., Tambe, P., Pal, S., et al: ‘Effect of non-ionic surfactant assisted modification of hexagonal boron nitride nanoplatelets on the mechanical and thermal properties of epoxy nanocomposites’, Compos. Interfaces, 2015, 22, (7), pp. 611627.
    3. 3)
      • 4. Wang, Q.: ‘The effect of nano size fillers on electrical performance of epoxy resin’. Doctoral dissertation, University of Southampton, 2012.
    4. 4)
      • 20. Zou, C., Fothergill, J.C., Rowe, S.W.: ‘The effect of water absorption on the dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 106117.
    5. 5)
      • 40. Li, L., Zhang, S., Chen, Y., et al: ‘Water transportation in epoxy resin’, Chem. Mater., 2005, 17, (4), pp. 839845.
    6. 6)
      • 54. Steeman, P.A., Maurer, F.H.: ‘An interlayer model for the complex dielectric constant of composites’, Colloid Polym. Sci., 1990, 268, (4), pp. 315325.
    7. 7)
      • 28. Qiang, D., Chen, G., Andritsch, T.: ‘Influence of water absorption on dielectric properties of epoxy SiO2 and BN nanocomposites’. Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, Michigan, USA, 2015, pp. 439442.
    8. 8)
      • 33. Yung, K.C., Liem, H.: ‘Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing’, J. Appl. Polym. Sci., 2007, 106, (6), pp. 35873591.
    9. 9)
      • 50. Steeman, P.A., Maurer, F.H., Van Es, M.A.: ‘Dielectric monitoring of water absorption in glass-bead-filled high-density polyethylene’, Polymer, 1991, 32, (3), pp. 523530.
    10. 10)
      • 56. Hui, L., Schadler, L.S., Nelson, J.K.: ‘The influence of moisture on the electrical properties of crosslinked polyethylene/silica nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (2), pp. 641653.
    11. 11)
      • 9. Cole, K.S.J.: ‘Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics’, Chem. Phys., 1941, 9, (4), pp. 341.
    12. 12)
      • 32. Condensed Product Bulletin-Boron Nitride Powders NX Grades, April 2016. Momentive, MPM 300-201-00E-GL.
    13. 13)
      • 2. Tagami, N., Okada, M., Hirai, N., et al: ‘Effects of curing and filler dispersion methods on dielectric properties of epoxy nanocomposites’. Annual Report-Conf. Electrical Insulation and Dielectric Phenomena, 2007, Vancouver, BC, Canada, 14 October 2007, pp. 232235.
    14. 14)
      • 42. Nelson, J.K., Hu, Y.: ‘Nanocomposite dielectrics—properties and implications’, J. Phys. D, Appl. Phys., 2005, 38, (2), p. 213.
    15. 15)
      • 11. Davidson, D.W.J.: ‘Dielectric Relaxation in Glycerol, Propylene Glycol, and n-PropanolChem. Phys., 1951, 19, pp. 1484.
    16. 16)
      • 59. Zhao, J.: ‘Dynamics of space charge and electroluminescence modelling in polyethylene’. Doctoral dissertation, University of Southampton, 2012.
    17. 17)
      • 29. Product Number: 637238, Version 5.1 Revision Date October 2013. Safety Data Sheet, Sigma-Aldrich.
    18. 18)
      • 19. Gonon, P., Hong, T.P., Lesaint, O., et al: ‘Influence of high levels of water absorption on the resistivity and dielectric permittivity of epoxy composites’, Polym. Test., 2005, 24, (6), pp. 799804.
    19. 19)
      • 49. Kremer, F., Schonhals, A., Luck, W.: ‘Broadband dielectric spectroscopy’ (Springer-Verlag, Berlin Heidelberg, New York, 2003).
    20. 20)
      • 39. Mueller, R., Kammler, H.K., Wegner, K., et al: ‘OH surface density of SiO2 and TiO2 by thermogravimetric analysis’, Langmuir, 2003, 19, (1), pp. 160165.
    21. 21)
      • 36. Kumar, A.P., Depan, D., Tomer, N.S., et al: ‘Nanoscale particles for polymer degradation and stabilization-trends and future perspectives’, Prog. Polym. Sci., 2009, 34, (6), pp. 479515.
    22. 22)
      • 7. Volkov, A.A., Prokhorov, A.S.: ‘Broadband dielectric spectroscopy of solids’, Radiophys. Quantum Electron., 2003, 46, (8), pp. 657665.
    23. 23)
      • 41. Zou, C., Fu, M., Fothergill, J.C., et al: ‘Influence of absorbed water on the dielectric properties and glass-transition temperature of silica-filled epoxy nanocomposites’. Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, 2006, pp. 321324.
    24. 24)
      • 58. Tanimoto, M., et al: ‘Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity’, ACS Appl. Mater. Interfaces, 2013, 5, (10), pp. 43744382.
    25. 25)
      • 22. Lau, K.Y., Vaughan, A.S., Chen, G., et al: ‘On the dielectric response of silica-based polyethylene nanocomposites’, J. Phys. D, Appl. Phys., 2013, 46, (9), p. 095303.
    26. 26)
      • 24. Lewis, T.J.: ‘Interfaces are the dominant feature of dielectrics at the nanometric level’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 739753.
    27. 27)
      • 13. Havriliak, S., Negami, S.: ‘A complex plane analysis of α-dispersions in some polymer systems’, J. Polym. Sci., Part C: Polym. Symp., 1966, 16, pp. 99.
    28. 28)
      • 52. Woo, M., Piggott, M.R.: ‘Water absorption of resins and composites: III. Water distribution as indicated by capacitance measurement’, J. Compos. Technol. Res., 1988, 10, (1), pp. 1619.
    29. 29)
      • 5. Reading, M., Xu, Z., Vaughan, A.S., et al: ‘The thermal and electrical properties of nano-silicon dioxide filled epoxy systems for use in high voltage insulation’. Electrical Insulation Conf. (EIC), Annapolis, Maryland, USA, 5 June 2011, pp. 493497.
    30. 30)
      • 31. Kim, W., Bae, J.W., Choi, I.D., et al: ‘Thermally conductive EMC (epoxy molding compound) for microelectronic encapsulation’, Polym. Eng. Sci., 1999, 39, (4), pp. 756766.
    31. 31)
      • 43. Eloundou, J.P.: ‘Dipolar relaxations in an epoxy-amine system’, Eur. Polym. J., 2002, 38, (3), pp. 431438.
    32. 32)
      • 21. Praeger, M., Hosier, I.L., Vaughan, A.S., et al: ‘Calcined silica for enhanced polyethylene nano composites’, Appl. Phys. Lett., 2015, 17, pp. 14.
    33. 33)
      • 38. Yu, J., Huang, X., Wu, C., et al: ‘Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties’, Polymer, 2012, 53, (2), pp. 471480.
    34. 34)
      • 3. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    35. 35)
      • 57. Hou, J., et al: ‘Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity’, RSC Adv., 2014, 4, (83), pp. 4428244290.
    36. 36)
      • 53. Paquin, L., St-Onge, H., Wertheimer, M.R.: ‘The complex permittivity of polyethylene/mica composites’, IEEE Trans. Electr. Insul., 1982, 5, pp. 399404.
    37. 37)
      • 1. Hedrick, J., Yilgor, I., Wilkes, G., et al: ‘Toughening of epoxy resins with ductile glassy thermoplastics. I. Hydroxyl functional polysulfones’, Polym. Bull., 1985, 13, pp. 201208.
    38. 38)
      • 26. Tanaka, T., Kozako, M., Fuse, N., et al: ‘Proposal of a multi-core model for polymer nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 669681.
    39. 39)
      • 44. Zhang, L.D., Zhang, H.F., Wang, G.Z., et al: ‘Dielectric behaviour of nano-TiO2 bulks’, Phys. Status Sol. (a), 1996, 157, (2), pp. 483491.
    40. 40)
      • 25. Tsagaropoulos, G., Eisenberg, A.: ‘Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers’, Macromolecules, 1995, 28, (18), pp. 60676077.
    41. 41)
      • 15. Hill, R.M., Dissado, L.A.: ‘The temperature dependence of relaxation processes’, J. Phys. C, Solid State Phys., 1982, 15, (25), p. 5171.
    42. 42)
      • 34. Hou, Z.L., Cao, M.S., Yuan, J., et al: ‘High-temperature conductance loss dominated defect level in h-BN: experiments and first principles calculations’, J. Appl. Phys., 2009, 105, (7).
    43. 43)
      • 18. Xiao, G.Z., Shanahan, M.E.: ‘Water absorption and desorption in an epoxy resin with degradation’, J. Polym. Sci. B, Polym. Phys., 1997, 35, (16), pp. 26592670.
    44. 44)
      • 16. Ciuprina, F., Hornea, A., Barbuta, M.G.: ‘Influence of temperature on dielectric performance of epoxy nanocomposites with inorganic nanofillers’, Appl. Math. Phys., 2013, 75, (3), pp. 159168.
    45. 45)
      • 46. Kao, K.C.: ‘Dielectric phenomena in solids’ (Elsevier Academic Press, San Diego, USA, 2004).
    46. 46)
      • 10. Davidson, D.W.: ‘Dielectric Relaxation in Glycerine’, ‘J. Chem. Phys.’, 1951, 18, pp. 1417.
    47. 47)
      • 47. Singha, S., Thomas, M.J.: ‘Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz–1 GHz’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 211.
    48. 48)
      • 17. Wang, Z., Zhou, W., Sui, X., et al: ‘Temperature-dependent dielectric properties of al/epoxy nanocomposites’, J. Electron. Mater., 2016, 45, (6), pp. 30693078.
    49. 49)
      • 35. Qiang, D., He, M., Chen, G., et al: ‘Influence of nano-SiO2 and BN on space charge and AC/DC performance of epoxy nanocomposites’. Electrical Insulation Conf. (EIC), Seattle, Washington, USA, 2015, pp. 492495.
    50. 50)
      • 55. Steeman, P.A., Maurer, F.H.: ‘An interlayer model for the complex dielectric constant of composites: an extension to ellipsoidally shaped particles’, Colloid Polym. Sci., 1992, 270, (11), pp. 10691079.
    51. 51)
      • 8. Debye, P.J.W.: ‘Polar molecules’ (Chemical Catalog Company, New York, USA, 1929).
    52. 52)
      • 27. Zou, C., Fothergill, J.C., Rowe, S.W.: ‘A water shell model for the dielectric properties of hydrated silica-filled epoxy nano-composites’. IEEE Int. Conf. Solid Dielectrics ICSD'07, Winchester, Hampshire, UK, 2007, pp. 389392.
    53. 53)
      • 14. Havriliak, S.: ‘A complex plane representation of dielectric and mechanical relaxation processes in some polymers’, Polymer, 1967, 8, pp. 161.
    54. 54)
      • 23. Hosier, I.L., Praeger, M., Vaughan, A.S., et al: ‘The effects of water on the dielectric properties of silicon-based nanocomposites’, IEEE Trans. Nanotechnol., 2017, 16, (2), pp. 169179.
    55. 55)
      • 45. Kochetov, R., Andritsch, T., Morshuis, P.H., et al: ‘Anomalous behaviour of the dielectric spectroscopy response of nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 107117.
    56. 56)
      • 6. Shafee, M.F., Jaafar, M.: ‘Effect of boron nitride nano filler filled epoxy composites for underfill application’, J. Eng. Sci., 2013, 9, pp. 8998.
    57. 57)
      • 30. Zeng, J., Fu, R., Shen, Y., et al: ‘High thermal conductive epoxy molding compound with thermal conductive pathway’, J. Appl. Polym. Sci., 2009, 113, (4), pp. 21172125.
    58. 58)
      • 12. Diaz-Calleja, R.: ‘Comment on the maximum in the loss permittivity for the Havriliak-Negami equation’, Macromolecules, 2000, 33, (24), pp. 89248924.
    59. 59)
      • 48. Andritsch, T., et al: ‘Proposal of the polymer chain alignment model’. Annual Report Conf. Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexico, 16 October 2011, pp. 624627.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2017.0002
Loading

Related content

content/journals/10.1049/iet-nde.2017.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address