Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Recent advances in microparticle continuous separation

Recent advances in microparticle continuous separation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recent advances in microparticle separation in continuous flow are presented. It is intended for scientists in the field of separation science in biology, chemistry and microsystems engineering. Recent techniques of micron-sized particle separation within microsystems are described with emphasis on five different categories: optical, magnetic, fluidic-only, electrical and minor separation methods. Examples from the growing literature are explained with insights on separation efficiency and microengineering challenges. Current applications of the techniques are discussed.

References

    1. 1)
      • J. Park , B. Kim , S.K. Choi . An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip , 11 , 1264 - 1270
    2. 2)
      • Y.L. Li , K. Kaler . Dielectrophoretic fluidic cell fractionation system. Anal. Chim. Acta , 1 , 151 - 161
    3. 3)
      • Huang, L.R., Barber, T.A., Carvalho, B.L.: `Devices and methods for enrichment and alteration of cells and other particles', United States Patent 20070026381, 2007.
    4. 4)
      • M. Radisic , R.K. Iyer , S.K. Murthy . Micro- and nanotechnology in cell separation. Int. J. Nanomed. , 1 , 3 - 14
    5. 5)
      • J.A.R. Price , J.P.H. Burt , R. Pethig . Applications of a new optical technique for measuring the dielectrophoretic behavior of microorganisms. Biochim. Biophys. Acta , 2 , 221 - 230
    6. 6)
      • I. Barbulovic-Nad , X.C. Xuan , J.S.H. Lee . DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab Chip , 2 , 274 - 279
    7. 7)
      • N. Pamme , A. Manz . On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal. Chem. , 24 , 7250 - 7256
    8. 8)
      • M. Geens , H.V. de Velde , G. De Block . The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum. Reprod. , 3 , 733 - 742
    9. 9)
      • Yager, P., Brody, J.P., Holl, M.R.: `Microfabricated differential extraction device and method', United States Patent 5932100, 1999.
    10. 10)
      • S. Kapishnikov , V. Kantsler , V. Steinberg . Continuous particle size separation and size sorting using ultrasound in a microchannel. J. Stat. , 1 - 15
    11. 11)
      • C.F. Chou , J.O. Tegenfeldt , O. Bakajin . Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys. J , 4 , 2170 - 2179
    12. 12)
      • Han, K., Frazier, A.B.: `Microfluidic system for continuous magnetophoresis separation of suspended cells using their native magnetic properties', Proc. NSTI Nanotech, May 2005, California, USA, p. 187–190.
    13. 13)
      • J. Rousselet , G.H. Markx , R. Pethig . Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation. Colloid Surf. A , 209 - 216
    14. 14)
      • H. Tournaye , E. Goossens , G. Verheyen . Preserving the reproductive potential of men and boys with cancer: current concepts and future prospects. Hum. Reprod. Update , 6 , 525 - 532
    15. 15)
      • T. Schnelle , T. Muller , G. Gradl . Paired microelectrode system: dielectrophoretic particle sorting and force calibration. J. Electrost , 3 , 121 - 132
    16. 16)
      • W.R. Rodriguez , N. Christodoulides , P.N. Floriano . A microchip CD4 counting method for HIV monitoring in resource-poor settings. PLoS Med. , 7 , 663 - 672
    17. 17)
    18. 18)
      • N. Demierre , T. Braschler , P. Linderholm . Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip , 3 , 355 - 365
    19. 19)
    20. 20)
      • Fuhr, G., Hagedorn, R.: `Method and device for manipulating particle in fluid flow', United States, 6, 465, 225 B1, 2002 [A].
    21. 21)
      • M.P. Hughes . (2003) Nanoelectromechanics in engineering and biology.
    22. 22)
    23. 23)
      • Nieuwenhuis, J.H., Vellekoop, M.J.: `Improved dielectrophoretic particle actuators for microfluidics', Proc. IEEE Sensors, 2003, 1 and 2, IEEE, New York, 2003, p. 573–577.
    24. 24)
    25. 25)
      • J. Kentsch , M. Durr , T. Schnelle . Microdevices for separation, accumulation, and analysis of biological micro and nanoparticles. IEE Proc., Nanobiotechnol. , 2 , 82 - 89
    26. 26)
      • L.J. Yang , P.P. Banada , M.R. Chatni . A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab Chip , 7 , 896 - 905
    27. 27)
      • D.W. Bianchi , J. Hanson . Sharpening the tools: a summary of a National Institutes of Health workshop on new technologies for detection of fetal cells in maternal blood for early prenatal diagnosis. J. Matern. Fetal Neonatal. Med. , 4 , 199 - 207
    28. 28)
      • Doh, I., Seo, K.S., Cho, Y.H.: `A continuous cell separation chip using hydrodynamic dielectrophoresis process', 17thIEEE Int. Conf. Micro Electro Mechanical Systems, IEEE, Maastricht, 2004, The Netherlands, p. 29–32.
    29. 29)
      • T.L. Edwards , B.K. Gale , A.B. Frazier . A microfabricated thermal field-flow fractionation system. Anal. Chem , 6 , 1211 - 1216
    30. 30)
      • J. Yang , Y. Huang , X.B. Wang . Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. , 5 , 2680 - 2689
    31. 31)
      • Lock, G., Pethig, R., Markx, G.H.: `Manipulation of particles in liquid media', United States Patent 6936151, 2005.
    32. 32)
      • S. Miltenyi , W. Muller , W. Weichel . High-Gradient Magnetic Cell-Separation with Macs. Cytometry , 2 , 231 - 238
    33. 33)
      • M. Yamada , M. Seki . Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip , 11 , 1233 - 1239
    34. 34)
      • Li, N., Kamei, D.T., Ho, C.-M.: `On-Chip Continuous Blood Cell Subtype Separation by Deterministic Lateral Displacement', Proc. 2nd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems Bangkok, January 2007, Thailand, p. 932–936.
    35. 35)
      • Miltenyi, S., Radbruch, A., Weichel, W.: `Metal matrices for use in high gradient magnetic separation of biological materials and method for coating the same', United States Patent 5385707, 1995.
    36. 36)
      • Bowden, S.A., Wilson, R., Parnell, J.: `Liquid–liquid extraction of included organic compounds from dissolved sulphate minerals performed on a microfluidic format', Proc. 37th Conf. Lunar and Planetary Science League City, March 2006, USA.
    37. 37)
    38. 38)
      • M. Yamada , M. Nakashima , M. Seki . Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. , 18 , 5465 - 5471
    39. 39)
      • Gruber, L., Bradley, K., Lopes, W.: `System and method of sorting materials using holographic laser steering', United States Patent 7241988, 2007.
    40. 40)
      • S. Fiedler , S.G. Shirley , T. Schnelle . Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. , 9 , 1909 - 1915
    41. 41)
      • X.Y. Hu , P.H. Bessette , J.R. Qian . Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. Sci. USA , 44 , 15757 - 15761
    42. 42)
    43. 43)
      • H. Morgan , D. Holmes , N.G. Green . 3D focusing of nanoparticles in microfluidic channels. IEE Proc., Nanobiotechnol. , 2 , 76 - 81
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • T.S. Leu , H.Y. Chen , F.B. Hsiao . Studies of particle holding, separating, and focusing using convergent electrodes in microsorters. Microfluid Nanofluid , 4 , 328 - 335
    48. 48)
    49. 49)
      • M. Durr , J. Kentsch , T. Muller . Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis , 4 , 722 - 731
    50. 50)
      • J.H. Nieuwenhuis , A. Jachimowicz , P. Svasek , D. Rocha , P.M. Sarro , M.J. Vellekoop . (2004) High-speed integrated particle sorters based on dielectrophoresis, Proc. IEEE Sensors.
    51. 51)
    52. 52)
    53. 53)
    54. 54)
      • Fuhr, G., Hagedorn, R., Müller, T.: `Method and device for manipulating particles in fluid flow', United States, 6, 727, 451 B1, 2004 [B].
    55. 55)
    56. 56)
      • F.Z. Bischoff , D.A. Marquez-Do , D.I. Martinez . Intact fetal cell isolation from maternal blood: improved isolation using a simple whole blood progenitor cell enrichment approach [RosetteSep(TM)]. Clin. Genet. , 6 , 483 - 489
    57. 57)
      • M.P. MacDonald , S. Neale , L. Paterson . Cell cytometry with a light touch: sorting microscopic matter with an optical lattice. J. Biol. Regul. Homeost. Agents , 2 , 200 - 205
    58. 58)
      • M.A.M. Gijs . Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid , 1 , 22 - 40
    59. 59)
    60. 60)
      • S. Choi , J.K. Park . Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip , 10 , 1161 - 1167
    61. 61)
      • Li, H., Kenny, T.: `High speed particles separation using ultrasound for micro-TAS and lab-on-a-chip application', Proc. 26th Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society, 2004, San Francisco, USA, p. 2631–2634.
    62. 62)
      • F. Baldessari , J.G. Santiago . Electrophoresis in nanochannels: brief review and speculation. J. Nanobiotechnol. , 12 , 189 - 195
    63. 63)
      • C. Slack , K. Lurix , S. Lewis , L. Lichten . Prenatal genetics – the evolution and future directions of screening and diagnosis. J. Perinat. Neonat. Nur. , 1 , 93 - 97
    64. 64)
      • http://www.arryx.com/PDFdocs/BioRyxApplications.pdf, accessed August 2007.
    65. 65)
      • Blattert, C., Jurischka, R., Schoth, A.: `Separation of blood in microchannel bends', Proc. 25th Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society, September 2003, Cancun, Mexico, p. 3388–3391.
    66. 66)
    67. 67)
      • J.H. Nieuwenhuis , A. Jachimowicz , P. Svasek . Optimisation of microfluidic particle sorters based on dielectrophoresis. IEEE Sens. J , 5 , 810 - 816
    68. 68)
      • H.A. Pohl . (1978) Dielectrophoresis: the behavior of neutral matter in non-uniform electric field.
    69. 69)
      • E.B. Cummings , A.K. Singh . Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal. Chem. , 18 , 4724 - 4731
    70. 70)
      • S.S. Shevkoplyas , T. Yoshida , L.L. Munn . Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. , 3 , 933 - 937
    71. 71)
      • S.A. Bowden , P.B. Monaghan , R. Wilson . The liquid–liquid diffusive extraction of hydrocarbons from a North Sea oil using a microfluidic format. Lab Chip , 6 , 740 - 743
    72. 72)
      • R.L. Smith , A.G.C. Spalding , A.K. Dholakia . Colloidal sorting in dynamic optical lattices. J. Opt. A , 134 - 138
    73. 73)
      • C.J. Chang-Hasnain . Tunable VCSEL. IEEE J. Sel. Top. Quantu. Electron. , 6 , 978 - 987
    74. 74)
      • S. Yang , A. Undar , J.D. Zahn . A microfluidic device for continuous, real time blood plasma separation. Lab Chip , 7 , 871 - 880
    75. 75)
      • Fuhr, G., Schnelle, T., Hagedorn, R.: `Electrode arrangement for the dielectrophoretic diversion of particles', United States, 6, 749, 736 B1, 2004 [C].
    76. 76)
    77. 77)
      • Blankenstein, G.: `Micro-flow system for particle separation and analysis', United States Patent 6432630 B1, 2002.
    78. 78)
    79. 79)
    80. 80)
      • H.O. Fatoyinbo , M.P. Hughes , S.P. Martin . Dielectrophoretic separation of Bacillus subtilis spores from environmental diesel particles. J. Environ. Monitor , 1 , 87 - 90
    81. 81)
      • A. Ashkin , J.M. Dziedzic , J.E. Bjorkholm , S. Chu . Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. , 5 , 288 - 290
    82. 82)
      • Zheng, S.Y., Tai, Y.C., Kasdan, H.: `A micro device for separation of erythrocytes and leukocytes in human blood', Proc. 27th Ann. Int. Conf. IEEE EMBS, August 2005, New York, USA, p. 1024–1027.
    83. 83)
      • H.A. Pohl , R. Pethig . Dielectric measurements using nonuniform electric-field (dielectrophoretic) effects. J. PhE , 2 , 190 - 193
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt_20070025
Loading

Related content

content/journals/10.1049/iet-nbt_20070025
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address