Print ISSN 1751-8741"/>
http://iet.metastore.ingenta.com
1887

Recent advances in microparticle continuous separation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article PDF
$19.95
Buy Knowledge Pack
10 articles for $120.00

Abstract

Recent advances in microparticle separation in continuous flow are presented. It is intended for scientists in the field of separation science in biology, chemistry and microsystems engineering. Recent techniques of micron-sized particle separation within microsystems are described with emphasis on five different categories: optical, magnetic, fluidic-only, electrical and minor separation methods. Examples from the growing literature are explained with insights on separation efficiency and microengineering challenges. Current applications of the techniques are discussed.

References

    1. 1)
      • W.R. Rodriguez , N. Christodoulides , P.N. Floriano . A microchip CD4 counting method for HIV monitoring in resource-poor settings. PLoS Med. , 7 , 663 - 672
    2. 2)
      • D.W. Bianchi , J. Hanson . Sharpening the tools: a summary of a National Institutes of Health workshop on new technologies for detection of fetal cells in maternal blood for early prenatal diagnosis. J. Matern. Fetal Neonatal. Med. , 4 , 199 - 207
    3. 3)
      • F.Z. Bischoff , D.A. Marquez-Do , D.I. Martinez . Intact fetal cell isolation from maternal blood: improved isolation using a simple whole blood progenitor cell enrichment approach [RosetteSep(TM)]. Clin. Genet. , 6 , 483 - 489
    4. 4)
      • C. Slack , K. Lurix , S. Lewis , L. Lichten . Prenatal genetics – the evolution and future directions of screening and diagnosis. J. Perinat. Neonat. Nur. , 1 , 93 - 97
    5. 5)
      • M. Geens , H.V. de Velde , G. De Block . The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum. Reprod. , 3 , 733 - 742
    6. 6)
      • H. Tournaye , E. Goossens , G. Verheyen . Preserving the reproductive potential of men and boys with cancer: current concepts and future prospects. Hum. Reprod. Update , 6 , 525 - 532
    7. 7)
      • L.J. Yang , P.P. Banada , M.R. Chatni . A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab Chip , 7 , 896 - 905
    8. 8)
      • H.O. Fatoyinbo , M.P. Hughes , S.P. Martin . Dielectrophoretic separation of Bacillus subtilis spores from environmental diesel particles. J. Environ. Monitor , 1 , 87 - 90
    9. 9)
      • 1 onward link is available for this reference.
      • CrossRef
    10. 10)
      • 1 onward link is available for this reference.
      • CrossRef
    11. 11)
      • A. Ashkin , J.M. Dziedzic , J.E. Bjorkholm , S. Chu . Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. , 5 , 288 - 290
    12. 12)
      • M.P. MacDonald , S. Neale , L. Paterson . Cell cytometry with a light touch: sorting microscopic matter with an optical lattice. J. Biol. Regul. Homeost. Agents , 2 , 200 - 205
    13. 13)
      • 1 onward link is available for this reference.
      • CrossRef
    14. 14)
      • R.L. Smith , A.G.C. Spalding , A.K. Dholakia . Colloidal sorting in dynamic optical lattices. J. Opt. A , 134 - 138
    15. 15)
      • http://www.arryx.com/PDFdocs/BioRyxApplications.pdf, accessed August 2007.
    16. 16)
      • Gruber, L., Bradley, K., Lopes, W.: `System and method of sorting materials using holographic laser steering', United States Patent 7241988, 2007.
    17. 17)
      • 1 onward link is available for this reference.
      • CrossRef
    18. 18)
      • 1 onward link is available for this reference.
      • CrossRef
    19. 19)
      • C.J. Chang-Hasnain . Tunable VCSEL. IEEE J. Sel. Top. Quantu. Electron. , 6 , 978 - 987
    20. 20)
      • M.A.M. Gijs . Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid , 1 , 22 - 40
    21. 21)
      • 1 onward link is available for this reference.
      • CrossRef
    22. 22)
      • S. Miltenyi , W. Muller , W. Weichel . High-Gradient Magnetic Cell-Separation with Macs. Cytometry , 2 , 231 - 238
    23. 23)
      • Miltenyi, S., Radbruch, A., Weichel, W.: `Metal matrices for use in high gradient magnetic separation of biological materials and method for coating the same', United States Patent 5385707, 1995.
    24. 24)
      • M. Radisic , R.K. Iyer , S.K. Murthy . Micro- and nanotechnology in cell separation. Int. J. Nanomed. , 1 , 3 - 14
    25. 25)
      • 1 onward link is available for this reference.
      • CrossRef
    26. 26)
      • 1 onward link is available for this reference.
      • CrossRef
    27. 27)
      • N. Pamme , A. Manz . On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal. Chem. , 24 , 7250 - 7256
    28. 28)
      • 1 onward link is available for this reference.
      • CrossRef
    29. 29)
      • Blankenstein, G.: `Micro-flow system for particle separation and analysis', United States Patent 6432630 B1, 2002.
    30. 30)
      • 1 onward link is available for this reference.
      • CrossRef
    31. 31)
      • Han, K., Frazier, A.B.: `Microfluidic system for continuous magnetophoresis separation of suspended cells using their native magnetic properties', Proc. NSTI Nanotech, May 2005, California, USA, p. 187–190.
    32. 32)
      • F. Baldessari , J.G. Santiago . Electrophoresis in nanochannels: brief review and speculation. J. Nanobiotechnol. , 12 , 189 - 195
    33. 33)
      • H.A. Pohl . (1978) Dielectrophoresis: the behavior of neutral matter in non-uniform electric field.
    34. 34)
      • J.A.R. Price , J.P.H. Burt , R. Pethig . Applications of a new optical technique for measuring the dielectrophoretic behavior of microorganisms. Biochim. Biophys. Acta , 2 , 221 - 230
    35. 35)
      • 1 onward link is available for this reference.
      • CrossRef
    36. 36)
      • M.P. Hughes . (2003) Nanoelectromechanics in engineering and biology.
    37. 37)
      • 1 onward link is available for this reference.
      • CrossRef
    38. 38)
      • J. Rousselet , G.H. Markx , R. Pethig . Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation. Colloid Surf. A , 209 - 216
    39. 39)
      • J. Yang , Y. Huang , X.B. Wang . Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. , 5 , 2680 - 2689
    40. 40)
      • S. Choi , J.K. Park . Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip , 10 , 1161 - 1167
    41. 41)
      • Y.L. Li , K. Kaler . Dielectrophoretic fluidic cell fractionation system. Anal. Chim. Acta , 1 , 151 - 161
    42. 42)
      • H.A. Pohl , R. Pethig . Dielectric measurements using nonuniform electric-field (dielectrophoretic) effects. J. PhE , 2 , 190 - 193
    43. 43)
      • S. Fiedler , S.G. Shirley , T. Schnelle . Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. , 9 , 1909 - 1915
    44. 44)
      • Fuhr, G., Hagedorn, R.: `Method and device for manipulating particle in fluid flow', United States, 6, 465, 225 B1, 2002 [A].
    45. 45)
      • Fuhr, G., Hagedorn, R., Müller, T.: `Method and device for manipulating particles in fluid flow', United States, 6, 727, 451 B1, 2004 [B].
    46. 46)
      • Fuhr, G., Schnelle, T., Hagedorn, R.: `Electrode arrangement for the dielectrophoretic diversion of particles', United States, 6, 749, 736 B1, 2004 [C].
    47. 47)
      • T. Schnelle , T. Muller , G. Gradl . Paired microelectrode system: dielectrophoretic particle sorting and force calibration. J. Electrost , 3 , 121 - 132
    48. 48)
      • M. Durr , J. Kentsch , T. Muller . Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis , 4 , 722 - 731
    49. 49)
      • J. Kentsch , M. Durr , T. Schnelle . Microdevices for separation, accumulation, and analysis of biological micro and nanoparticles. IEE Proc., Nanobiotechnol. , 2 , 82 - 89
    50. 50)
      • J.H. Nieuwenhuis , A. Jachimowicz , P. Svasek , D. Rocha , P.M. Sarro , M.J. Vellekoop . (2004) High-speed integrated particle sorters based on dielectrophoresis, Proc. IEEE Sensors.
    51. 51)
      • J.H. Nieuwenhuis , A. Jachimowicz , P. Svasek . Optimisation of microfluidic particle sorters based on dielectrophoresis. IEEE Sens. J , 5 , 810 - 816
    52. 52)
      • Nieuwenhuis, J.H., Vellekoop, M.J.: `Improved dielectrophoretic particle actuators for microfluidics', Proc. IEEE Sensors, 2003, 1 and 2, IEEE, New York, 2003, p. 573–577.
    53. 53)
      • H. Morgan , D. Holmes , N.G. Green . 3D focusing of nanoparticles in microfluidic channels. IEE Proc., Nanobiotechnol. , 2 , 76 - 81
    54. 54)
      • Doh, I., Seo, K.S., Cho, Y.H.: `A continuous cell separation chip using hydrodynamic dielectrophoresis process', 17thIEEE Int. Conf. Micro Electro Mechanical Systems, IEEE, Maastricht, 2004, The Netherlands, p. 29–32.
    55. 55)
      • 1 onward link is available for this reference.
      • CrossRef
    56. 56)
      • T.S. Leu , H.Y. Chen , F.B. Hsiao . Studies of particle holding, separating, and focusing using convergent electrodes in microsorters. Microfluid Nanofluid , 4 , 328 - 335
    57. 57)
      • X.Y. Hu , P.H. Bessette , J.R. Qian . Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. Sci. USA , 44 , 15757 - 15761
    58. 58)
      • J. Park , B. Kim , S.K. Choi . An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip , 11 , 1264 - 1270
    59. 59)
      • C.F. Chou , J.O. Tegenfeldt , O. Bakajin . Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys. J , 4 , 2170 - 2179
    60. 60)
      • E.B. Cummings , A.K. Singh . Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal. Chem. , 18 , 4724 - 4731
    61. 61)
      • I. Barbulovic-Nad , X.C. Xuan , J.S.H. Lee . DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab Chip , 2 , 274 - 279
    62. 62)
      • N. Demierre , T. Braschler , P. Linderholm . Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip , 3 , 355 - 365
    63. 63)
      • 1 onward link is available for this reference.
      • CrossRef
    64. 64)
      • M. Yamada , M. Nakashima , M. Seki . Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal. Chem. , 18 , 5465 - 5471
    65. 65)
      • M. Yamada , M. Seki . Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip , 11 , 1233 - 1239
    66. 66)
      • Blattert, C., Jurischka, R., Schoth, A.: `Separation of blood in microchannel bends', Proc. 25th Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society, September 2003, Cancun, Mexico, p. 3388–3391.
    67. 67)
      • S.S. Shevkoplyas , T. Yoshida , L.L. Munn . Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. , 3 , 933 - 937
    68. 68)
      • S. Yang , A. Undar , J.D. Zahn . A microfluidic device for continuous, real time blood plasma separation. Lab Chip , 7 , 871 - 880
    69. 69)
      • 1 onward link is available for this reference.
      • CrossRef
    70. 70)
      • Zheng, S.Y., Tai, Y.C., Kasdan, H.: `A micro device for separation of erythrocytes and leukocytes in human blood', Proc. 27th Ann. Int. Conf. IEEE EMBS, August 2005, New York, USA, p. 1024–1027.
    71. 71)
      • 1 onward link is available for this reference.
      • CrossRef
    72. 72)
      • Huang, L.R., Barber, T.A., Carvalho, B.L.: `Devices and methods for enrichment and alteration of cells and other particles', United States Patent 20070026381, 2007.
    73. 73)
      • Li, N., Kamei, D.T., Ho, C.-M.: `On-Chip Continuous Blood Cell Subtype Separation by Deterministic Lateral Displacement', Proc. 2nd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems Bangkok, January 2007, Thailand, p. 932–936.
    74. 74)
      • Yager, P., Brody, J.P., Holl, M.R.: `Microfabricated differential extraction device and method', United States Patent 5932100, 1999.
    75. 75)
      • 1 onward link is available for this reference.
      • CrossRef
    76. 76)
      • S.A. Bowden , P.B. Monaghan , R. Wilson . The liquid–liquid diffusive extraction of hydrocarbons from a North Sea oil using a microfluidic format. Lab Chip , 6 , 740 - 743
    77. 77)
      • Bowden, S.A., Wilson, R., Parnell, J.: `Liquid–liquid extraction of included organic compounds from dissolved sulphate minerals performed on a microfluidic format', Proc. 37th Conf. Lunar and Planetary Science League City, March 2006, USA.
    78. 78)
      • T.L. Edwards , B.K. Gale , A.B. Frazier . A microfabricated thermal field-flow fractionation system. Anal. Chem , 6 , 1211 - 1216
    79. 79)
      • S. Kapishnikov , V. Kantsler , V. Steinberg . Continuous particle size separation and size sorting using ultrasound in a microchannel. J. Stat. , 1 - 15
    80. 80)
      • Li, H., Kenny, T.: `High speed particles separation using ultrasound for micro-TAS and lab-on-a-chip application', Proc. 26th Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society, 2004, San Francisco, USA, p. 2631–2634.
    81. 81)
      • 1 onward link is available for this reference.
      • CrossRef
    82. 82)
      • 1 onward link is available for this reference.
      • CrossRef
    83. 83)
      • Lock, G., Pethig, R., Markx, G.H.: `Manipulation of particles in liquid media', United States Patent 6936151, 2005.

Related content

content/journals/10.1049/iet-nbt_20070025
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address