Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Interactions of electrical fields with fluids:laboratory-on-a-chip applications

Interactions of electrical fields with fluids:laboratory-on-a-chip applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The area of ‘laboratory-on-a-chip’, miniaturised or microfluidic analysis systems, is a rapidly developing field. At the microscale, electrokinetic processes become enhanced, and the advent of AC electrokinetics (EK) in recent years further promotes the development of electrokinetic devices for microfluidics. ACEK has demonstrated to manipulate fluids and polarisable particles at low voltages without some of the disadvantages from DCEK, such as electrochemical reactions and the limitation of low ionic strength fluids. The three major mechanisms of ACEK, that is, dielectrophoresis, AC electro-osmosis and AC electrothermal effect, provide versatility and flexibility to interface with many current methods and technologies in multiple biological, chemical and physical disciplines. This paper gives an overview of ACEK and its applications, with an emphasis on fluid manipulation by electric fields.

References

    1. 1)
      • J. Wu . Electrokinetic microfluidics for on-chip bioparticle processing. IEEE Trans. Nanotech , 2 , 84 - 89
    2. 2)
    3. 3)
      • E. Cummings , A. Singh . Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal. Chem , 18 , 4724 - 4731
    4. 4)
    5. 5)
      • R. Pethig , I. Karube . (1991) Application of A.C.: electrical fields to the manipulation and characterisation of cells, Automation in Biotechnology.
    6. 6)
      • J. Wu , Y. Ben , D. Battigelli . Long-range AC electrokinetic trapping and detection of bioparticles. Ind. Eng. Chem. Res. , 8 , 2815 - 2822
    7. 7)
      • J. Wu . AC electro-osmotic micropump by asymmetric electrode polarisation. J. Appl. Phys.
    8. 8)
      • J. Wu , Y. Ben , H.-C. Chang . Particle detection by micro- electrical impedance spectroscopy with asymmetric-polarisation AC electro-osmotic trapping. J. Microfluid. Nanofluid , 2 , 161 - 167
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • M.R. Brown , C.D. Meinhart . AC electro-osmotic flow in a DNA concentrator. J. Microfluid. Nanofluid , 513 - 523
    15. 15)
      • D. Lastochkin , R. Zhou , P. Wang . Electrokinetic micorpump and micromixer design based on ac Faradaic polarisation. J. Appl. Phys , 31 , 1730 - 1733
    16. 16)
      • Wu, J., Islam, N., Lian, M.: `High sensitivity particle detection by biased AC electro-osmotic trapping on cantilever', 19thIEEE Int Conf. Micro Electro Mechanical Systems MEMS, 22–26 January 2006, Istanbul, Turkey, p. 566–569.
    17. 17)
      • Wu, J., Islam, N., Lian, M.: `High sensitivity particle detection by biased AC electro-osmotic trapping on cantilever', 19thIEEE Int Conf. Micro Electro Mechanical Systems (MEMS 2006), 22–26 January 2006, Istanbul, Turkey, p. 566–569.
    18. 18)
    19. 19)
    20. 20)
      • J.S. Newman . (1973) Electrochemical systems.
    21. 21)
    22. 22)
      • Ben, Y.: `Nonlinear electrokinetic phenomena in microfluidic devices', 2004, PhD, University of Notre Dame.
    23. 23)
      • M. Lian , N. Islam , J. Wu . Particle line assembly/patterning by microfluidic AC electro-osmosis. J. Phys. Conf. Ser. , 589 - 594
    24. 24)
    25. 25)
      • Wong, P.K., Chen, C.-Y., Wang, T.-H.: `An AC Electro-osmotic Processor for Biomolecules', TRANSDUCERS' 03, 8–12 June 2003, p. 20–23.
    26. 26)
      • H.A. Pohl . (1978) Dielectrophoresis.
    27. 27)
      • N. Green , A. Ramos , A. González . Electric field induced fluid flow on microelectrodes: the effect of illumination. J. Phys. D: Appl. Phys. , L13 - L17
    28. 28)
      • V. Studer , A. Pepin , Y. Chen . An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst , 944 - 949
    29. 29)
      • N. Islam , M. Lian , J. Wu . Enhancing cantilever capability with Integrated AC Electrokinetic Trapping Mechanism. J. Microfluid. Nanofluid , 3 , 369 - 375
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • J. Wu , M. Lian , K. Yang . Micropumping of biofluids by AC electrothermal effects. Appl. Phys. Lett.
    34. 34)
      • H.A. Pohl . Some effects of nonuniform fields on dielectrics. J. Appl. Phys. , 8 , 1182 - 1188
    35. 35)
    36. 36)
    37. 37)
      • R. Zhou , P. Wang , H.-C. Chang . Bacteria capture, concentration and detection by AC dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes. Electrophoresis
    38. 38)
      • K.H. Bhatt , S. Grego , O.D. Velev . An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Langmuir , 6603 - 6612
    39. 39)
      • S. Banerjee , B.E. White , L. Huang . Precise positioning of single-walled carbon nanotubes by ac dielectrophoresis. J. Vac. Sci. Technol , 6 , 3173 - 3178
    40. 40)
      • R. Pethig , P. Somasundaran . (2006) Dielectrophoresis of Biological Cells, Encyclopedia of surface and colloid science.
    41. 41)
      • A. Castellanos , A. Ramos , A. Gonzalez . Electrohydrodynamics and dielectrophoresis in microsystem: scaling laws. J. Phys. D Appl. Phys , 2584 - 2597
    42. 42)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt_20070023
Loading

Related content

content/journals/10.1049/iet-nbt_20070023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address