http://iet.metastore.ingenta.com
1887

Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs

Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Microfabricated impedance cytometers have been developed to measure the electrical impedance of single biological particles at high speed. A general approach to analytically solve the electric field distributions for two different designs of cytometers: parallel facing electrodes and coplanar electrodes, using the Schwarz–Christoffel Mapping method is presented. Compared to previous analytical solutions, our derivations are more systematic and solutions are more straightforward. The solutions have been validated by comparison with numerical simulations performed using the finite element method. The influences on the electric field distribution due to the variations in the geometry of the devices have been discussed. A simple method is used to determine the impedance sensitivity of the system and to compare the two electrode designs. For identical geometrical parameters, we conclude that the parallel electrodes design is more sensitive than the coplanar electrodes.

References

    1. 1)
      • N.G. Green , T. Sun , D. Holmes , H. Morgan . Impedance based flow sensor. Proc. Microtechnologies for the New Millennium, SPIE , 634 - 641
    2. 2)
      • J. Collinsa , A.P. Lee . Microfluidic flow transducer based on the measurement of electrical admittance. Lab Chip , 7 - 10
    3. 3)
    4. 4)
    5. 5)
      • M.P. Hughes , H. Morgan . Dielectrophoretic characterization and separation of antibody-coated submicrometer latex spheres. Anal. Chem. , 3441 - 3445
    6. 6)
      • H. Morgan , N.G. Green . (2003) AC electrokinetics: colloids and nanoparticles.
    7. 7)
      • A.Y. Fu , C. Spence , A. Scherer , F.H. Arnold , S.R. Quake . A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. , 1109 - 1111
    8. 8)
      • S. Gawad , L. Schild , Ph. Renaud . Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip , 76 - 82
    9. 9)
      • J. Voldman , M.L. Gray , M. Toner , A. Schmidt . A microfabrication-based dynamic array cytometer. Anal. Chem. , 3984 - 3990
    10. 10)
    11. 11)
      • M.M. Wang , E. Tu , D.L. Raymond , J.M. Yang , H. Zhang , N. Hagen , B. Dees , E.M. Mercer , A.H. Forster , I. Kariv , P.J. Marchand , W. Butler . Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. , 83 - 87
    12. 12)
    13. 13)
      • K. Cheung , S. Gawad , Ph. Renaud . Impedance spectroscopy flow cytometer: on-chip label-free cell differentiation. Cytometry Part A , 124 - 132
    14. 14)
      • D. Holmes , H. Morgan , N.G. Green . High throughput particle analysis: combing dielectrophoretic particle focusing with confocal optical detection. Biosens. Bioelectron. , 1621 - 1630
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • X. Wang , X.-B. Wang , F.F. Becker , P.R.C. Gascoyne . A theoretical method of electric field analysis for dielectrophoretic electrode arrays using Green's theorem. J. Phys. D , 1649 - 1660
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • D.E. Chuang , S. Loire , I. Mezic . Closed-form solutions in the electrical field analysis for dielectrophoretic and traveling wave inter-digitated electrode arrays. J. Phys. D , 3073 - 3078
    23. 23)
    24. 24)
      • P. Bruschi , A. Nannini , F. Pieri , G. Raffa , B. Vigna , S. Zerbini . Electrostatic analysis of a comb-finger actuator with Schwarz-Christoffel conformal mapping. Sens. Actuators A , 106 - 117
    25. 25)
      • M. Markovic , M. Jufer , Y. Perriard . Analyzing an electromechanical actuator by Schwarz-Christoffel mapping. IEEE Trans. Mag. , 1858 - 1863
    26. 26)
      • R.E. Collin . (1991) Field theory of guided waves.
    27. 27)
    28. 28)
    29. 29)
      • J. Hong , D.S. Yoon , S.K. Kim , T.S. Kim , S. Kim , E.Y. Pak , K. No . AC frequency characteristics of coplanar impedance sensors as design parameters. Lab Chip , 270 - 279
    30. 30)
    31. 31)
    32. 32)
      • N. Demierre , T. Braschler , P. Linderholm , U. Seger , H.V. Lintel , Ph. Renaud . Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip , 355 - 365
    33. 33)
      • R. Schinzinger , P.A.A. Laura . (2003) Conformal mapping: methods and applications.
    34. 34)
      • I.S. Gradshteyn , I.M. Ryzhik . (1980) Table of integrals, series and products.
    35. 35)
      • P.F. Byrd , M.D. Friedman . (1954) Handbook of elliptic integrals for engineers and physicists.
    36. 36)
      • J.C. Maxwell . A treatise on electricity and magnetism’ (Dover, New York, 1954).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt_20070019
Loading

Related content

content/journals/10.1049/iet-nbt_20070019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address