Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

FISH and chips: chromosomal analysis on microfluidic platforms

FISH and chips: chromosomal analysis on microfluidic platforms

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Interphase fluorescence in situ hybridisation (FISH) is a sensitive diagnostic tool used for the detection of alterations in the genome on cell-by-cell basis. However, the cost-per-test and the technical complexity of current FISH protocols have slowed its widespread utilisation in clinical settings. For many cancers, the lack of a cost-effective and informative diagnostic method has compromised the quality of life for patients. We present the first demonstration of a microchip-based FISH protocol, coupled with a novel method to immobilise peripheral blood mononuclear cells inside microfluidic channels. These first on-chip implementations of FISH allow several chromosomal abnormalities associated with multiple myeloma to be detected with a ten-fold higher throughput and 1/10‐th the reagent consumption of the traditional slide-based method. Moreover, the chip test is performed within hours whereas the conventional protocol required days. In addition, two on-chip methods to enhance the hybridisation aspects of FISH have been examined: mechanical and electrokinetic pumping. Similar agitation methods have led to significant improvements in hybridisation efficiency with DNA microarray work, but with this cell-based method the benefits were moderate. On-chip FISH technology holds promise for sophisticated and cost-effective screening of cancer patients at every clinic visit.

References

    1. 1)
      • H. Maruyama , F. Arai , T. Fukuda , T. Katsuragi . Immobilization of individual cells by local photopolymerization on a chip. Analyst , 3 , 304 - 310
    2. 2)
      • E. Biddiss , D. Erickson , D.Q. Li . Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal. Chem. , 11 , 3208 - 3213
    3. 3)
      • R.R. Swiger , J.D. Tucker . Fluorescence in situ hybridization; a brief review. Environ. Mol. Mutagen. , 4 , 245 - 254
    4. 4)
      • J. Lichtenberg , N.F. de Rooij , E. Verpoorte . Sample pretreatment on microfabricated devices. Talanta , 2 , 233 - 266
    5. 5)
      • D.P. Gaver , S.M. Kute . A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophys. J. , 2 , 721 - 733
    6. 6)
      • M.J. Heller . DNA microarray technology: Devices, systems, and applications. Annu. Rev. Biomed. Eng. , 129 - 153
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • D. Erickson , D.Q. Li , U.J. Krull . Modeling of DNA hybridization kinetics for spatially resolved biochips. Anal. Biochem. , 2 , 186 - 200
    11. 11)
      • B.J. Cheek , A.B. Steel , M.P. Torres , Y.Y. Yu , H.J. Yang . Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip. Anal. Chem. , 24 , 5777 - 5783
    12. 12)
      • M.H. Oddy , J.G. Santiago , J.C. Mikkelsen . Electrokinetic instability micromixing. Anal. Chem. , 24 , 5822 - 5832
    13. 13)
      • V.J. Sieben , C.J. Backhouse . Rapid on-chip postcolumn labeling and high-resolution separations of DNA. Electrophoresis , 24 , 4729 - 4742
    14. 14)
    15. 15)
      • A.E. Nkodo , J.M. Garnier , B. Tinland , H.J. Ren , C. Desruisseaux , L.C. McCormick , G. Drouin , G.W. Slater . Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis , 12 , 2424 - 2432
    16. 16)
      • D. Erickson , X.Z. Liu , U. Krull , D.Q. Li . Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis. Anal. Chem. , 24 , 7269 - 7277
    17. 17)
      • H.A. Stone , A.D. Stroock , A. Ajdari . Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann. Rev. Fluid Mech. , 381 - 411
    18. 18)
      • C. Backhouse , M. Caamano , F. Oaks , E. Nordman , A. Carrillo , B. Johnson , S. Bay . DNA sequencing in a monolithic microchannel device. Electrophoresis , 1 , 150 - 156
    19. 19)
    20. 20)
      • D.E. Smith , T.T. Perkins , S. Chu . Dynamical scaling of DNA diffusion coefficients. Macromolecules , 4 , 1372 - 1373
    21. 21)
      • L.M. Pilarski , N.V. Giannakopoulos , A.J. Szczepek , A.M. Masellis , M.J. Mant , A.R. Belch . In multiple myeloma, circulating hyperdiploid B cells have clonotypic immunoglobulin heavy chain rearrangements and may mediate spread of disease. Clin. Cancer Res. , 2 , 585 - 596
    22. 22)
      • B. Beatty , S. Mai , J. Squire . (2002) Fluorescence in-situ hybridization: a practical approach.
    23. 23)
      • P.S. Dittrich , K. Tachikawa , A. Manz . Micro total analysis systems. Latest advancements and trends. Anal. Chem. , 12 , 3887 - 3907
    24. 24)
      • M.A. Gertz , M.Q. Lacy , A. Dispenzieri , P.R. Greipp , M.R. Litzow , K.J. Henderson , S.A. Van Wier , G.J. Ahmann , R. Fonseca . Clinical implications of t(11; 14)(q13; q32), t(4; 14)(p16.3; q32), and-17p13 in myeloma patients treated with high-dose therapy. Blood , 8 , 2837 - 2840
    25. 25)
      • M.A. Bynum , G.B. Gordon . Hybridization enhancement using microfluidic planetary centrifugal mixing. Anal. Chem. , 23 , 7039 - 7044
    26. 26)
      • A. Hatch , A.E. Kamholz , K.R. Hawkins , M.S. Munson , E.A. Schilling , B.H. Weigl , P. Yager . A rapid diffusion immunoassay in a T-sensor. Nat. Biotechnol. , 5 , 461 - 465
    27. 27)
      • A.E. Kamholz , P. Yager . Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophys. J. , 1 , 155 - 160
    28. 28)
      • J.H.S. Kim , A. Marafie , X.Y. Jia , J.V. Zoval , M.J. Madou . Characterization of DNA hybridization kinetics in a microfluidic flow channel. Sensor Actuator B-Chem. , 1 , 281 - 289
    29. 29)
      • W. King , J. Proffitt , L. Morrison , J. Piper , D. Lane , S. Seelig . The role of fluorescence in situ hybridization technologies in molecular diagnostics and disease management. Mol. Diagn. , 4 , 309 - 319
    30. 30)
      • A.E. Kamholz , B.H. Weigl , B.A. Finlayson , P. Yager . Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal. Chem. , 23 , 5340 - 5347
    31. 31)
      • H. Netten , I.T. Young , L.J. vanVliet , H.J. Tanke , H. Vroljik , W.C.R. Sloos . FISH and chips: automation of fluorescent dot counting in interphase cell nuclei. Cytometry , 1 , 1 - 10
    32. 32)
      • A.W. Peterson , R.J. Heaton , R.M. Georgiadis . The effect of surface probe density on DNA hybridization. Nucleic Acids Res. , 24 , 5163 - 5168
    33. 33)
      • P.L. Bergsagel , A.M. Smith , A. Szczepek , M.J. Mant , A.R. Belch , L.M. Pilarski . In Multiple-Myeloma, Clonotypic B-Lymphocytes are Detectable among Cd19(+) Peripheral-Blood Cells Expressing Cd38, Cd56, and Monotypic Ig Light-Chain. Blood , 2 , 436 - 447
    34. 34)
      • J.G. Santiago . Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal. Chem. , 10 , 2353 - 2365
    35. 35)
      • S.S. Sorlie , R. Pecora . A dynamic light-scattering study of 4 DNA restriction fragments. Macromolecules , 2 , 487 - 497
    36. 36)
      • G.W. Dewald , T. Therneau , D. Larson , Y.K. Lee , S. Fink , S. Smoley , S. Paternoster , A. Adeyinka , R. Ketterling , D.L. Van Dyke , R. Fonseca , R. Kyle . Relationship of patient survival and chromosome anomalies detected in metaphase and/or interphase cells at diagnosis of myeloma. Blood , 10 , 3553 - 3558
    37. 37)
      • D.J. Harrison , K. Fluri , K. Seiler , Z.H. Fan , C.S. Effenhauser , A. Manz . Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science , 5123 , 895 - 897
    38. 38)
      • W. Jaksic , S. Trudel , H. Chang , Y. Trieu , X. Qi , J. Mikhael , D. Reece , C. Chen , A.K. Stewart . Clinical outcomes in t(4; 14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J. Clin. Oncol. , 28 , 7069 - 7073
    39. 39)
      • J. Nath , K.L. Johnson . A review of fluorescence in situ hybridization (FISH); Current status and future prospects. Biotech. Histochem. , 2 , 54 - 78
    40. 40)
      • M. Andreeff , D. Pinkel . (1999) Introduction to fluorescence in situ hybridization: principles and clinical applications.
    41. 41)
      • H. Tonnies . Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol. Med. , 6 , 246 - 250
    42. 42)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt_20060021
Loading

Related content

content/journals/10.1049/iet-nbt_20060021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address