http://iet.metastore.ingenta.com
1887

Dielectrophoretic detection of membrane morphology changes in Jurkat T-cells undergoing etoposide-induced apoptosis

Dielectrophoretic detection of membrane morphology changes in Jurkat T-cells undergoing etoposide-induced apoptosis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A dielectrophoresis (DEP) cell profiler, with concurrent FACS measurements, was used to monitor the morphological changes of Jurkat T-cells as they progressed through chemically induced apoptosis using etoposide. The cell ‘physiometry’ profiling technique measures the radius and the so-called DEP crossover frequency fxo of individual cells in a suspension, and this information was used to determine the effective plasma membrane capacitance of each cell. Control cells (n=526) exhibited a dynamic spread of fxo values, ranging from 50 to 250 kHz, and as apoptosis progressed over 6 h, the upper value for fxo progressively increased and extended beyond 500 kHz. This corresponded to a reduction in plasma membrane capacitance from 13.34 (±2.88) to 10.49 (±4.00) mF/m2, and reflected a general smoothing of the membrane through loss of microvilli, for example. This is in broad agreement with previously reported studies of HL-60 cells undergoing apoptosis, but the authors' observation of a dynamic spread of fxo values does not agree with the earlier report that the fxo values for viable and apoptotic cells fall into two separable, relatively narrow, frequency bands. This has implications when devising protocols for the efficient DEP separation of viable, apoptotic and necrotic cells.

References

    1. 1)
      • D. Ribble , N.B. Goldstein , D.A. Norris , Y.G. Shellman . A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol.
    2. 2)
      • K.B. Spurgers , N.S. Chari , N.L. Bohnenstiehl , T.J. McDonnell . Molecular mediators of cell death in multistep carcinogenesis: a path to targeted therapy. Cell Death Differ. , 1360 - 1370
    3. 3)
      • R.L. Sparrow , H. Komodromou , E. Tippett , T. Georgakopoulos , W. Xu . Apoptotic lymphocytes and CD34+ cells in cryopreserved cord blood detected by the fluorescent vital dye SYTO 16 and correlation with loss of L-selectin (CD62L) expression. Bone Marrow Transplant. , 61 - 67
    4. 4)
      • W. Gorczyca . Cytometric analyses to distinguish death processes. Endocr.-Relat. Cancer , 17 - 19
    5. 5)
      • M.J. Arends , A.H. Wyllie . Apoptosis: mechanisms and role in pathology. Int. Rev. Exp. Pathol. , 223 - 254
    6. 6)
    7. 7)
      • R. Pethig , M. Ferrari . (2006) Cell physiometry tools based on dielectrophoresis, BioMEMS and biomedical nanotechnology.
    8. 8)
      • M. Stephens , M.S. Talary , R. Pethig , A.K. Burnett , K.I. Mills . The dielectrophoresis enrichment of CD34+ cells from peripheral blood stem cell harvests. Bone Marrow Transplant. , 4 , 777 - 782
    9. 9)
      • X.B. Wang , J. Yang , Y. Huang , J.K. Vykoukal , F.F. Becker , P.R.C. Gascoyne . Cell separation by dielectrophoretic field-flow-fractionation. Anal. Chem. , 4 , 832 - 839
    10. 10)
      • X. Wang , F.F. Becker , P.R.C. Gascoyne . Membrane dielectric changes indicate induced apoptosis in HL-60 cells more sensitively than surface phospatidylserine expression or DNA fragmentation. Biochim. Biophys. Acta , 412 - 420
    11. 11)
      • K.R. Hande . Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer , 10 , 1514 - 1521
    12. 12)
      • Lee, R.S., Pethig, R., Talary, M.S.: `Dielectrophoretic particle profiling system and method', US, 7,063,777, 20 June 2006.
    13. 13)
      • T.B. Jones . (1995) Electromechanics of particles.
    14. 14)
    15. 15)
    16. 16)
      • X.-B. Wang , Y. Huang , P.R.C. Gascoyne , F.F. Becker , R. Hölzel , R. Pethig . Changes in Friend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation. Biochim. Biophys. Acta , 330 - 344
    17. 17)
    18. 18)
      • F. Lang , A. Lepple-Wienhues , M. Paulmichl , I. Szabo , D. Siemen , E. Gulbins . Ion channels, cell volume, and apoptotic cell death. Cell Physiol. Biochem. , 6 , 285 - 292
    19. 19)
      • A. Irimajiri , T. Hanai , A. Inouye . A dielectric theory of multi-stratified shell model with its application to a lymphoma cell. J. Theor. Biol. , 251 - 269
    20. 20)
      • F.H. Labeed , H.M. Coley , M.P. Hughes . Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis. Biochim. Biophys. Acta , 922 - 929
    21. 21)
      • B.B. Hasinoff , M.E. Abram , N. Barnabe , T. Khélifa , W.P. Allan , J.C. Yalowich . The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Mol. Pharmacol. , 3 , 453 - 461
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt_20060018
Loading

Related content

content/journals/10.1049/iet-nbt_20060018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address