Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Synthesis, characterisation and anti-tumour activity of biopolymer based platinum nanoparticles and 5-fluorouracil loaded platinum nanoparticles

A facile and green synthesis of platinum nanoparticles [gum kondagogu platinum nanoparticles (GKPtNP)] using biopolymer- gum kondagogu was developed. The formation of GKPtNP was confirmed by ultraviolet (UV)–visible spectroscopy, scanning electron microscopy–energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Zeta potential, Fourier transform infrared, inductively coupled plasma mass spectroscopy. The formed GKPtNP are well dispersed, homogeneous with a size of 2–4 ± 0.50 nm, having a negative zeta potential (−46.1 mV) indicating good stability. 5-Fluorouracil (5FU) was loaded onto the synthesised GKPtNP, which leads to the development of a new combination of nanomedicine (5FU–GKPtNP). The in vitro drug release studies of 5FU–GKPtNP in pH 7.4 showed a sustained release profile over a period of 120 min. Agrobacterium tumefaciens induced in vitro potato tumour bioassay was employed for screening the anti-tumour potentials of GKPtNP, 5FU, and 5FU–GKPtNP. The experimental results suggested a complete tumour inhibition by 5FU–GKPtNP at a lower concentration than the GKPtNP and 5FU. Furthermore, the mechanism of anti-tumour activity was assessed by their interactions with DNA using agarose gel electrophoresis and UV-spectroscopic analysis. The electrophoresis results revealed that the 5FU–GKPtNP totally diminishes DNA and the UV-spectroscopic analysis showed a hyperchromic effect with red shift indicating intercalation type of binding with DNA. Over all, the present study revealed that the combined exposure of the nanoformulation resulted in the enhanced anti-tumour effect.

Inspec keywords: Fourier transform infrared spectra; pH; biochemistry; biomedical materials; transmission electron microscopy; nanomedicine; microorganisms; tumours; visible spectra; materials preparation; DNA; electrophoresis; drugs; nanofabrication; molecular biophysics; X-ray chemical analysis; scanning electron microscopy; electrokinetic effects; drug delivery systems; X-ray diffraction; platinum; nanoparticles; polymers; ultraviolet spectra; cancer

Other keywords: in vitro drug release studies; Fourier transform infrared spectroscopy; gum kondagogu platinum nanoparticles; DNA; inductively coupled plasma mass spectroscopy; nanomedicine; X-ray diffraction; time 120.0 min; tumour inhibition; tumour activity; antitumour activity; ultraviolet-visible spectroscopy; zeta potential; UV-spectroscopic analysis; Agrobacterium tumefaciens; in vitro potato tumour bioassay; sustained release profile; UV-visible spectroscopy; Pt; transmission electron microscopy; agarose gel electrophoresis; 5-fluorouracil loaded platinum nanoparticles; 5FU–GKPtNP; biopolymer-based platinum nanoparticles; scanning electron microscopy-energy dispersive X-ray spectroscopy

Subjects: Physical chemistry of biomolecular solutions and condensed states; Electrochemistry and electrophoresis; Preparation of organic materials, polymers and plastics; Other methods of nanofabrication; Patient care and treatment; Biomedical materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Nanotechnology applications in biomedicine

References

    1. 1)
      • 21. Islam, A., Anwarul, K.B.M., Saidul, I.M.: ‘A review on chemical synthesis process of platinum nanoparticles’, Asia Pac. J. Energy Environ., 2014, 1, pp. 107121.
    2. 2)
      • 4. Bendale, Y., Bendale, V., Paul, S., et al: ‘Green synthesis, characterization and anticancer potential of platinum nanoparticles bioplatin’, Chin. J. Integr. Med., 2012, 10, pp. 681690.
    3. 3)
      • 27. Rastogi, L., Beedu, S.R., Kora, A.J.: ‘Facile synthesis of palladium nanocatalyst using gum kondagogu (Cochlospermum gossypium): a natural biopolymer’, IET Nanobiotechnol., 2015, 9, pp. 362367.
    4. 4)
      • 15. Selvaraj, V., Alagar, M.: ‘Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe’, Int. J. Pharm., 2007, 337, pp. 275281.
    5. 5)
      • 6. Luty-Btoch, M., Wojnicki, M., Pacławski, K., et al: ‘The synthesis of platinum nanoparticles and their deposition on the active carbon fibers in one microreactor cycle’, Chem. Eng. J., 2013, 226, pp. 4651.
    6. 6)
      • 51. Maeda, H., Bharate, G.Y., Daruwalla, Y.: ‘Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect’, Eur. J. Pharm. Biopharm., 2009, 71, pp. 409419.
    7. 7)
      • 30. Shahdost-fard, F., Salimi, A., Khezrian, S.: ‘Highly selective and sensitive adenosine aptasensor based on platinum nanoparticles as catalytical label for amplified detection of biorecognition events through H2O2 reduction’, Biosens. Bioelectron., 2014, 53, pp. 355362.
    8. 8)
      • 11. Naidu, V.G.M., Madhusudhana, K., Rao, B.S., et al: ‘Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers’, Carbohydr. Polym., 2009, 76, pp. 464471.
    9. 9)
      • 10. Janaki, B., Sashidhar, R.B.: ‘Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): a potential food additive’, Food Chem., 1998, 61, pp. 231236.
    10. 10)
      • 40. Zhang, C., Li, G., Wang, Y., et al: ‘Preparation and characterization of 5-fluorouracil-loaded PLLA–PEG/PEG nanoparticles by a novel supercritical CO2 technique’, Int. J. Pharm., 2012, 436, pp. 272281.
    11. 11)
      • 23. Nellore, J., Pauline, C., Amarnath, K.: ‘Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neuro rescue effect on 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine-induced experimental parkinsonism in Zebra fish’, J. Neurodegener. Dis., 2013, 97239, pp. 1118.
    12. 12)
      • 43. Islam, M.S., Akhtar, M.M., Parvez, M.S., et al: ‘Antitumor and antibacterial activity of a crude methanol leaf extract of Vitex negundo L.’, Arch. Biol. Sci., 2013, 65, pp. 229238.
    13. 13)
      • 22. Devi, G., Sarala Rao, V.J.: ‘Room temperature synthesis of colloidal platinum nanoparticles’, Bull. Mater. Sci., 2000, 23, pp. 467470.
    14. 14)
      • 54. Jangir, D.K., Charak, S., Mehrotra, R., et al: ‘FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA’, J. Photochem. Photobiol. B, 2011, 105, pp. 143148.
    15. 15)
      • 41. Anitha, A., Deepa, N., Chennazhi, K.P., et al: ‘Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment’, Biochim. Biophys. Acta, 2014, 1840, pp. 27302743.
    16. 16)
      • 3. Yee, C.K., Jordan, R., Ulman, A., et al: ‘One-phase synthesis of thiol-functionalized platinum nanoparticles’, Langmuir, 1999, 15, pp. 43144316.
    17. 17)
      • 47. Mclaungjlin, J.L.: ‘Crown gall tumors on potato disc and bine shrimp lethality: two single bioassays or plant screening and fractionation’, in Houstettmann, K. (Ed.): ‘Methods in plant biochemistry’, vol. 6 (Academic Press, London, 1991), pp. 131.
    18. 18)
      • 13. Mohammadi, H., Adedi, A., Akbarzadeh, A., et al: ‘Evaluation of synthesized platinum nanoparticles on the MCF-7 and HepG-2 cancer cell lines’, Int. Nano Lett., 2013, 3, pp. 2832.
    19. 19)
      • 19. Ashish, C., Priyanka, C.: ‘Powder XRD technique and its applications in science and technology’, J. Anal. Bioanal. Tech., 2014, 5, p. 5, doi: 10.4172/2155-9872.1000212.
    20. 20)
      • 29. Raju, D., Mehta, U.J., Beedu, S.R.: ‘Biogenic green synthesis of monodispersed gum kondagogu (Cochlospermum gossypium) iron nanocomposite material and its application in germination and growth of mung bean (Vigna radiata) as a plant model’, IET Nanobiotechnol., 2016, 10, pp. 141146.
    21. 21)
      • 45. Srirama, R., Ramesha, G., Ravikanth, R.U.S., et al: ‘Are plants with anticancer activity resistant to crown gall? A test of hypothesis’, Curr. Sci., 2007, 95, pp. 1025.
    22. 22)
      • 2. Zhang, L., Gu, F.X., Chan, J.M., et al: ‘Nanoparticles in medicine: therapeutic applications and developments’, Clin. Pharmacol. Ther., 2008, 83, pp. 761769.
    23. 23)
      • 46. Agrios, G.N.: ‘Plant disease caused by prokaryotes: bacteria and mollicutes’, in ‘Plant pathology’ (Elsevier, Academic Press, San Diego, 1997), pp. 407447.
    24. 24)
      • 16. Sashidhar, R.B., Selvi, S.K., Vinod, V.T.P., et al: ‘Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents’, J. Environ. Radioact., 2015, 148, pp. 3341.
    25. 25)
      • 18. Lopez, T., Figueras, F., Manjarrez, J., et al: ‘Catalytic nanomedicine: a new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo tests with C6 animal model on Wistar rats’, Eur. J. Med. Chem., 2010, 45, pp. 19821990.
    26. 26)
      • 39. Tawfik, E., Ahamed, M., Almalik, A., et al: ‘Prolonged exposure of colon cancer cells to 5-fluorouracil nanoparticles improves its anticancer activity’, Saudi Pharm. J., 2017, 25, pp. 206213.
    27. 27)
      • 8. Syed, A., Ahmad, A.: ‘Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum’, Colloids Surf. B, 2012, 97, pp. 2731.
    28. 28)
      • 34. Greenwood, R., Kendall, K.: ‘Electroacoustic studies of moderately concentrated colloidal suspensions’, J. Eur. Ceram. Soc., 1999, 19, pp. 479488.
    29. 29)
      • 20. Ramirez, E., Erades, L., Philippot, K., et al: ‘Shape control of platinum nanoparticles’, Adv. Funct. Mater., 2007, 17, pp. 22192228.
    30. 30)
      • 53. Longley, D.B., Harkin, D.P., Johnston, P.G.: ‘5-fluorouracil: mechanisms of action and clinical strategies’, Nat. Rev. Cancer, 2003, 3, pp. 330338.
    31. 31)
      • 35. Barichello, J.M., Morishita, M., Takayama, K., et al: ‘Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method’, Drug Dev. Ind. Pharm., 1999, 25, pp. 471476.
    32. 32)
      • 49. Shimoyama, S., Mochizuki, Y., Kusada, O., et al: ‘Supra-additive antitumor activity of 5FU with tumor necrosis factor-related apoptosis-inducing ligand on gastric and colon cancers in vitro’, Int. J. Oncol., 2002, 21, pp. 643648.
    33. 33)
      • 31. Gaidhani, S.V., Yeshvekar, R.K., Shedbalkar, U.U., et al: ‘Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus’, Process Biochem., 2014, 49, pp. 23132319.
    34. 34)
      • 33. Borse, V., Kaler, A., Banerjee, U.: ‘Microbial synthesis of platinum nanoparticles and evaluation of their anticancer activity’, Int. J. Emerg. Trends Electr. Electron., 2015, 11, pp. 2631.
    35. 35)
      • 5. Obreja, L., Pricop, D., Foca, N., et al: ‘Platinum nanoparticles synthesis by sonoelectrochemical methods’, Mater. Plast., 2010, 47, pp. 4247.
    36. 36)
      • 28. Suresh, Y., Annapurna, S., Bhikshamaiah, G., et al: ‘Green luminescent copper nanoparticles’, Mater. Sci. Eng. C, 2016, 149, p. 012187.
    37. 37)
      • 25. Vinod, V.T.P., Saravanan, P., Sreedhar, B., et al: ‘A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium)’, Colloids Surf. B, 2011, 83, pp. 291298.
    38. 38)
      • 26. Zhang, X., Lai, Z., Liu, Z., et al: ‘A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots’, Angew. Chem. Int. Ed., 2015, 54, pp. 54255428.
    39. 39)
      • 44. Islam, M.S., Akhtar, M., Rahman, M.M., et al: ‘Antitumor and phytotoxic activities of leaf methanol extract of Oldenlandia diffusa willd roxb’, Global J. Pharm. Pharm. Sci., 2009, 3, pp. 99106.
    40. 40)
      • 7. Konishi, Y., Ohno, K., Saitoh, N., et al: ‘Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae’, J. Biotechnol., 2007, 128, pp. 648653.
    41. 41)
      • 24. Sreedhar, B., Devi, D.K., Yada, D.: ‘Selective hydrogenation of nitroarenes using gum acacia supported Pt colloid an effective reusable catalyst in aqueous medium’, Catal. Commun., 2011, 12, pp. 10091014.
    42. 42)
      • 9. Sashidhar, R.B., Raju, D., Karuna, R.: ‘Tree gum: gum kondagogu’, in Ramavat, K.G., Merillon, J.-M. (Eds.): ‘Polysaccharides (bioactivity and biotechnology)’ (Springer International, Switzerland, 2015), pp. 185217.
    43. 43)
      • 50. Xibo, M., Zhen, C., Yushen, J., et al: ‘SM5-1-Conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted hepatocellular carcinoma imaging and therapy’, Biomaterials, 2014, 35, pp. 28782889.
    44. 44)
      • 42. Gupta, P.N., Jain, S., Nhate, C., et al: ‘Development and evaluation of paclitaxel loaded PLGA: poloxamer blend nanoparticles for cancer chemotherapy’, Int. J. Biol. Macromol., 2014, 69, pp. 393399.
    45. 45)
      • 52. Lukas, N., Jiri, K., Amitava, M., et al: ‘Platinum nanoparticles induce damage to DNA and inhibit DNA replication’, PLOS One, 2017, 12, p. e0180798.
    46. 46)
      • 38. Yan, C., Chen, D., Gu, J., et al: ‘Nanoparticles of 5-fluorouracil (5-FU) loaded N-succinyl-chitosan (Suc-Chi) for cancer chemotherapy: preparation, characterization, in vitro drug release and anti-tumor activity’, J. Pharm. Pharmacol., 2006, 58, pp. 11711181.
    47. 47)
      • 1. Daniel, M.C., Astruc, D.: ‘Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology’, Chem. Rev., 2004, 104, pp. 293346.
    48. 48)
      • 48. Medhat, A., Mansour, S., Ei-Sonbaty, S., et al: ‘Evaluation of the antitumor activity of platinum nanoparticles in the treatment of hepatocellular carcinoma induced in rats’, Tumor Biol., 2017, 39, pp. 110.
    49. 49)
      • 32. Shah, M.A.: ‘Growth of uniform nanoparticles of platinum by an economical approach at relatively low temperature’, Sci. Iran., 2012, 19, pp. 964966.
    50. 50)
      • 37. Sun, L., Chen, Y., Zhou, Y., et al: ‘Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo’, Asian J. Pharm. Sci., 2017, 12, pp. 418423.
    51. 51)
      • 12. Fu, Y.J., Shyu, S.S., Su, F.H., et al: ‘Development of biodegradable co-poly (D,L-lactic/glycolic acid) microspheres for the controlled release of 5-FU by the spray drying method’, Colloids Surf. B, 2002, 25, pp. 269279.
    52. 52)
      • 17. Suresh, V., Raju, D., Karuna, R., et al: ‘Evaluation of antitumor potential of forskolin and andrographolide employing potato tumor bioassay model’, Clin. Cancer Drugs, 2017, 3, pp. 121130.
    53. 53)
      • 36. Safwat, M.A., Soliman, G.M., Sayed, D., et al: ‘Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells’, Int. J. Pharm., 2016, 513, pp. 648658.
    54. 54)
      • 14. Balasubramanian, S.S.: ‘Curcumin and 5-Fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia’, Int. J. Nanomed., 2014, 9, pp. 437459.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5171
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5171
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address