Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Biosynthesis of reusable and recyclable CuO@Magnetite@Hen Bone NCs and its antioxidant and antibacterial activities: a highly stable magnetically nanocatalyst for excellent reduction of organic dyes and adsorption of polycyclic aromatic hydrocarbons

For the first time, through a fast, eco-friendly and economic method, the aqueous extract of the leaf of Euphorbia corollate was used to the green synthesis of the highly stable CuO@Magnetite@Hen Bone nanocomposites (NCs) as a potent antioxidant and antibacterial agent against Pseudomonas aureus, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae pathogenic bacteria. The biosynthesised NCs were identified using the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction (XRD), Fourier transforms infrared spectroscopy and UV–vis analytical techniques. Also, the radical scavenging activity using (2,2-diphenyl-1-picrylhydrazyl) method was used to evaluate the antioxidant activity of the NCs. The stability of nanocatalyst was monitored using the XRD and SEM analyses after 30 days from its synthesis. Furthermore, its excellent catalytic activity, recycling stability, and high substrate applicability were demonstrated to the adsorption of the polycyclic aromatic hydrocarbons of the light crude oil from Shiwashok oil fields and destruction of methylene blue and methyl orange as harmful organic dyes at ambient temperature using UV–vis spectroscopy. Moreover, the green CuO@Magnetite@Hen Bone NCs were recovered and reused several times without considerable loss of its catalytic activity.

References

    1. 1)
      • 32. Sajadi, S.M., Salaryan, P., Enayati, A.: ‘Optimal extraction method of phenolics from the root of Euphorbia condylocarpa’, Chem. Nat. Compd., 2011, 47, p. 434.
    2. 2)
      • 9. Nemamcha, A., Rehspringer, J.: ‘Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution’, J. Phys. Chem. B, 2006, 110, p. 383.
    3. 3)
      • 14. Zhang, W., Wang, S.Y.: ‘Antioxidant activity and phenolic compounds in selected herbs’, J. Agric. Food Chem., 2001, 49, p. 5165.
    4. 4)
      • 3. Busi, S., Rajkumari, J., Ranjan, B., et al: ‘Green rapid biogenic synthesis of bioactive silver nanoparticles (AgNPs) using Pseudomonas aeruginosa’, IET-Nanobiotech., 2014, 8, p. 267.
    5. 5)
      • 31. Siddiqui, S.U., Ahmed, K.: ‘Methods for desulfurization of crude oil: a review’, Sci. Int., 2016, 28, p. 1169.
    6. 6)
      • 24. Crini, G.: ‘Non-conventional low-cost adsorbents for dye removal: a review’, Bioresour. Technol., 2006, 97, p. 1061.
    7. 7)
      • 21. Nasrollahzadeh, M., Sajadi, S.M., Khalaj, M.: ‘Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol’, RSC Adv., 2014, 4, p. 47313.
    8. 8)
      • 18. Colbert, L.B., Decker, E.A.: ‘Antioxidant activity of an ultrafiltration permeate from acid whey’, J. Food Sci., 1991, 56, p. 1248.
    9. 9)
      • 29. Babich, I.V., Moulijn, J.A.: ‘Science and technology of novel processes for deep desulfurization of oil refinery streams’, Fuel, 2003, 82, p. 607.
    10. 10)
      • 25. Abdel-Shafy, H.I., Mansour, M.S.M.: ‘A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation’, Egypt. J. Pet., 2016, 25, p. 107.
    11. 11)
      • 33. Jasbi, A.R.: ‘Chemistry and biological activity of secondary metabolites in Euphorbia from Iran’, Phytochemistry, 2006, 67, p. 1977.
    12. 12)
      • 37. Ghosh, B.K., Hazra, S., Nak, B., et al: ‘Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes’, Powder Technol., 2015, 269, p. 371.
    13. 13)
      • 7. Li, F., Zhang, B., Dong, S., et al: ‘A novel method of electrodepositing highly dispersed nano palladium particles on glassy carbon electrode’, Electrochem. Acta, 1997, 42, p. 2563.
    14. 14)
      • 41. Mogha, N.K., Gosian, S., Masram, D.T.: ‘Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes’, Appl. Surf. Sci., 2017, 396, p. 1427.
    15. 15)
      • 8. Kim, W., Park, J., Jang, Y., et al: ‘Synthesis of monodisperse palladium nanoparticles’, Nano Lett., 2003, 3, p. 1289.
    16. 16)
      • 43. Abay, A.K., Kuo, D.H., Chen, X., et al: ‘A new V-doped Bi2(O,S)3 oxysulfide catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes’, Chemosphere., 2017, 189, p. 21.
    17. 17)
      • 15. Atarod, M., Nasrollahzadeh, M., Sajadi, S.M.: ‘Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B’, RSC Adv., 2005, 5, p. 91532.
    18. 18)
      • 13. Phull, A.R., Abbas, Q., Ali, A., et al: ‘Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliate, Future J Pharm Sci., 2016, 2, p. 31.
    19. 19)
      • 20. Atarod, M., Nasrollahzadeh, M., Sajadi, S.M.: ‘Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water’, J. Colloid Interface Sci., 2016, 462, p. 272.
    20. 20)
      • 28. Orisakwe, O.E., Lgweze, Z.N., Okolo, K.O., et al: ‘Human health hazards of poly aromatic hydrocarbons in Nigerian smokeless tobacco’, Toxicol Rep., 2015, 2, p. 1019.
    21. 21)
      • 36. Clarke, G., Ting, K.N., Wiart, C., et al: ‘High correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest’, Antioxidants, 2013, 2, p. 1.
    22. 22)
      • 5. Meftahizade, H.: ‘Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia khinjuk, J. Med. Plants Res., 2011, 17, p. 4310.
    23. 23)
      • 17. Lindley, M.G.: ‘The impact of food processing on antioxidants in vegetable oils, fruits and vegetables’, Trends Food Sci. Technol., 1998, 9, p. 336.
    24. 24)
      • 23. Maryami, M., Nasrollahzadeh, M., Mehdipour, E., et al: ‘Green synthesis of the. Pd/perlite nanocomposite using Euphorbia neriifolia L. leaf extract and evaluation of its catalytic activity’, Sep. Sci. Technol., 2017, 184, p. 298.
    25. 25)
      • 4. Hosseinkhani, M., Montazer, M., Eskandarnejad, S., et al: ‘Simultaneous in situ synthesis of nano silver and wool fiber fineness enhancement using sulphur based reducing agents’, Colloids Surf. A, 2012, 415, p. 431.
    26. 26)
      • 40. Joyti, K., Singh, A.: ‘Green synthesis of nanostructured silver particles and their catalytic application in dye degradation’, J. Genet. Eng. Biotechnol., 2016, 14, p. 311.
    27. 27)
      • 34. http://www.nichegardens.com/catalog/item.php?id=134.
    28. 28)
      • 39. Khodadadi, B., Bordbar, M., Faal, A.Y., et al: ‘Green synthesis of Ag nanoparticles/clinoptilolite using Vaccinium macrocarpon fruit extract and its excellent catalytic activity for reduction of organic dyes’, J. Alloys Compd., 2017, 719, p. 82.
    29. 29)
      • 16. Hollman, P.C.H., Arts, I.C.W.: ‘Flavonols, flavones and flavanols – nature, occurrence and dietary burden’, J. Sci. Food Agric., 2000, 80, p. 1081.
    30. 30)
      • 1. González, C.R., Villalba, P.V., Salas, P., et al: ‘Green synthesis of nanosilver-decorated graphene oxide sheets’, IET Nanobiotech., 2016, 10, p. 301.
    31. 31)
      • 12. Nasrollahzadeh, M., Sajadi, S.M., Hatamifard, A.: ‘Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites’, Appl. Catal. B, 2016, 191, p. 209.
    32. 32)
      • 30. Ma, X.L., Sakanishi, K., Isoda, T., et al: ‘Quantum chemical calculation on the desulfurization reactivities of heterocyclic sulfur compounds’, Energy Fuel, 1995, 9, p. 33.
    33. 33)
      • 19. Antolovich, M., Prenzler, P.D., Patsalides, E., et al: ‘Methods for testing antioxidant activity’, Analyst, 2002, 127, p. 183.
    34. 34)
      • 49. Maham, M., Nasrollahzadeh, M., Sajadi, S.M., et al: ‘Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes’, J. Colloid Interface Sci., 2017, 497, p. 33.
    35. 35)
      • 47. Ucar, A., Findik, M., Gubbuk, H., et al: ‘Catalytic degradation of organic dye using reduced graphene oxide–polyoxometalate nanocomposite’, Mater. Chem. Phys., 2017, 196, p. 21.
    36. 36)
      • 26. He, J., Wen, Y., Ti, H.W., et al: ‘Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes’, Chemosphere, 2015, 128, p. 111.
    37. 37)
      • 44. Bhat, S.V., Nagasampagi, B.A., Sivakumar, M.: ‘Chemistry of natural products’ (Narosa publishing house, New delhi, 2005), p. 585.
    38. 38)
      • 50. Sajadi, S.M., Nasrollahzadeh, M.: ‘Preparation of the Ag/RGO nanocomposite by use of Abutilon hirtum leaf extract: a recoverable catalyst for the reduction of organic dyes in aqueous medium at room temperature’, Int. J. Hydrog. Energy, 2016, 41, p. 21236.
    39. 39)
      • 27. Dat, N.D., Chang, M.B.: ‘Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies’, Sci. Total Environ., 2017, 609, p. 682.
    40. 40)
      • 10. Nasrollahzadeh, M., Sajadi, S.M., Maham, M., et al: ‘In situ green synthesis of Cu nanoparticles supported on natural natrolite zeolite for the reduction of 4-nitrophenol, Congo red and methylene blue’, IET Nanobiotech., 2017, 11, p. 538.
    41. 41)
      • 45. Nasrollahzadeh, M., Momeni, S.S., Sajadi, S.M.: ‘Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6’, J. Colloid Interface Sci., 2017, 506, p. 471.
    42. 42)
      • 42. Omidvar, A., Jaleh, B., Nasrollahzadeh, M.: ‘Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water’, J. Colloid Interf. Sci., 2017, 496, p. 44.
    43. 43)
      • 46. Bhatt, C.S., Nagaraj, B., Suresh, A.K.: ‘Nanoparticles-shape influenced high-efficient degradation of dyes: comparative evaluation of nano-cubes vs nano-rods vs nano-spheres’, J. Mol. Liq., 2017, 242, p. 958.
    44. 44)
      • 22. Issaabadi, Z., Nasrollahzadeh, M., Sajadi, S.M.: ‘Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity’, J. Clean Prod., 2017, 142, p. 3584.
    45. 45)
      • 38. Rostami-Vartooni, A., Nasrollahzadeh, M., Alizadeh, M.: ‘Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes’, J. Colloid Interf. Sci., 2016, 470, p. 268.
    46. 46)
      • 6. Schmid, G.: ‘Large clusters and colloids. Metals in the embryonic state’, Chem. Rev., 1992, 92, p. 1709.
    47. 47)
      • 35. Madan, H.R., Sharma, S.C., Suresh, D., et al: ‘Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties’, Acta Mol. Biomol. Spectrosc., 2016, 152, p. 404.
    48. 48)
      • 2. Saran, M., Vyas, S., Mathur, M., et al: ‘Green synthesis and characterisation of CuNPs: insights into their potential bioactivity’, IET Nanobiotech., 2018, 12, p. 357.
    49. 49)
      • 48. Wang, N., Hu, Y.X., Zhang, Z.: ‘Sustainable catalytic properties of silver nanoparticles supported montmorillonite for highly efficient recyclable reduction of methylene blue’, Appl Clay Sci., 2017, 150, p. 47.
    50. 50)
      • 11. Kiamehr, M., Alipour, B., Nasrollahzadeh, M., et al: ‘Catalytic reduction of 2,4-dinitrophenylhydrazine by cuttlebone supported Pd NPs prepared using Conium maculatum leaf extract’, IET Nanobiotech., 2018, 12, p. 217.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5014
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address