Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Role of AgNPs in the enhancement of seed germination and its effect on plumule and radicle length of Pennisetum glaucum

The authors have investigated beneficial effects of 1 mM of silver nanoparticles (AgNPs) on agriculturally important plant Pennisetum glaucum (Bajara). The extracellular AgNPs were synthesised using Bacillus subtilis spizizenni and characterised using ultraviolet–visible absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). Optical absorption spectrum showed characteristic peak of AgNPs at 423 nm. FT-IR analysis of AgNPs showed peak at 3435 cm−1, which indicates the presence of N–H group (primary, secondary amines and amides) on the surface of AgNPs. TEM studies indicate that synthesised AgNPs have average size of ∼2 nm. Energy dispersive X-ray spectroscopy showed strong signal of Ag at 3 keV. Treatment of 1 mM AgNPs to the bajara seeds was found to be sufficient for excellent germination of seeds within 3 days. There was also significant increase in radicle and plumule length as compared with control bajara seeds according to statistical analysis by one-way analysis of variance, followed by Tukey's test. The percentage of AgNPs detected in root samples was 0.003% (by inductively coupled plasma atomic emission spectroscopy), which is negligible. There is still need to study the bioavailability and the type of interaction of AgNPs with plants, necessary for application in agriculture.

References

    1. 1)
      • 17. Olmos, J., Paniagua-Michel, J.: ‘Bacillus subtilis a potential probiotic Bacterium to formulate functional feeds for aquaculture’, J. Microbial. Biochem. Technol., 2014, 6, (7), pp. 361365.
    2. 2)
      • 29. Iram, F., Iqbal, M.S., Athar, M.M., et al: ‘Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study’, Carbohydr. Polym., 2014, 104, pp. 2933.
    3. 3)
      • 1. Colman, B.P., Wang, S.Y., Auffan, M., et al: ‘Antimicrobial effects of commercial silver nanoparticles are attenuated in natural stream water and sediment’, Ecotoxicology, 2012, 21, (7), pp. 18671877.
    4. 4)
      • 5. Tang, Y.J., Wu, S.G., Huang, L., et al: ‘Phytotoxicity of metal–oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces’, J. Pet. Environ. Biotechnol., 2012, 3, (4), p. 126.
    5. 5)
      • 33. Griffitt, R.J., Luo, J., Gao, J., et al: ‘Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms’, Environ. Toxicol. Chem., 2008, 27, (9), pp. 19721978.
    6. 6)
      • 10. Karthik, L., Kumar, G., Kirthi, A.V., et al: ‘Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application’, Bioprocess Biosyst. Eng., 2014, 37, (2), pp. 261267.
    7. 7)
      • 9. Benn, T.M., Westerhoff, P.: ‘Nanoparticle silver released into water from commercially available sock fabrics’, Environ. Sci. Technol., 2008, 42, (11), pp. 41334139.
    8. 8)
      • 20. Henglein, A.: ‘Physicochemical properties of small metal particles in solution: ‘microelectrode’ reactions, chemisorption, composite metal particles, and the atom-to-metal transition’, J. Phys. Chem., 1993, 97, (21), pp. 54575471.
    9. 9)
      • 26. Wrótniak-Drzewiecka, W., Gaikwad, S., Laskowski, D., et al: ‘Novel approach towards synthesis of silver nanoparticles from Myxococcus virescens and their lethality on pathogenic bacterial cells’, Austin J. Biotechnol. Bioeng., 2014, 1, (1), pp. 0107.
    10. 10)
      • 6. Yasur, J., Rani, P.U.: ‘Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology’, Environ. Sci. Pollut. Res., 2013, 20, (12), pp. 86368648.
    11. 11)
      • 21. Velmurugan, P., Iydroose, M., Mohideen, M.H.A.K., et al: ‘Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity’, Bioprocess Biosyst. Eng., 2014, 37, (8), pp. 15271534.
    12. 12)
      • 14. Kulkarni, R.R., Shaiwale, N.S., Deobagkar, D.N., et al: ‘Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity’, Int. J. Nanomed., 2015, 10, p. 963.
    13. 13)
      • 13. Shaligram, N.S., Bule, M., Bhambure, R., et al: ‘Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain’, Process Biochem., 2009, 44, (8), pp. 939943.
    14. 14)
      • 16. Coleman, G.: ‘Studies on the regulation of extracellular enzyme formation by Bacillus subtilis’, J. Gen. Microbiol., 1967, 49, (3), pp. 421431.
    15. 15)
      • 11. Almutairi, Z.M., Alharbi, A.: ‘Effect of silver nanoparticles on seed germination of crop plants’, J. Adv. Agric., 2015, 4, (1), pp. 283288.
    16. 16)
      • 25. Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E.A., et al: ‘Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction’, Molecules, 2012, 17, (7), pp. 85068517.
    17. 17)
      • 34. Colman, B.P., Arnaout, C.L., Anciaux, S., et al: ‘Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario’, PloS One, 2013, 8, (2), p. e5718.
    18. 18)
      • 31. Ruitenberg, R.: ‘Earthworm health hurt by nanoparticles in soil in Alterra study, Bloomberg’. Available at www.bloomberg.com/news/2013-01-29/earthworm-healthhurt-by-nanoparticles-in-soil-in-alterra-study.html, 2013.
    19. 19)
      • 32. Xu, L., Liu, Y., Bai, R., et al: ‘Applications and toxicological issues surrounding nanotechnology in the food industry’, Pure Appl. Chem., 2010, 82, (2), pp. 349372.
    20. 20)
      • 4. Parveen, A., Rao, S.: ‘Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum’, J. Cluster Sci., 2015, 26, (3), pp. 693701.
    21. 21)
      • 22. Wei, X., Luo, M., Li, W., et al: ‘Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3’, Bioresour. Technol., 2012, 103, (1), pp. 273278.
    22. 22)
      • 7. Yin, L., Colman, B.P., McGill, B.M., et al: ‘Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants’, PLoS One, 2012, 7, (10), p. e47674.
    23. 23)
      • 8. Oberdörster, E.: ‘Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass’, Environ. Health Perspect., 2004, 112, (10), pp. 10581062.
    24. 24)
      • 12. Singh, R., Shedbalkar, U.U., Wadhwani, S.A., et al: ‘Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications’, Appl. Microbiol. Biotechnol., 2015, 99, (11), pp. 45794593.
    25. 25)
      • 24. Kumar, A., Joshi, H., Pasricha, R., et al: ‘Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules’, J. Colloid Interface Sci., 2003, 264, (2), pp. 396401.
    26. 26)
      • 19. Saifuddin, N., Wong, C.W., Yasumira, A.A.: ‘Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation’, Eur. J. Chem., 2009, 6, (1), pp. 6170.
    27. 27)
      • 3. Berahmand, A.A., Panahi, A.G., Sahabi, H., et al: ‘Effects silver nanoparticles and magnetic field on growth of fodder maize (Zea mays L.)’, Biol. Trace Elem. Res., 2012, 149, (3), pp. 419424.
    28. 28)
      • 30. Thiruvengadam, M., Gurunathan, S., Chung, I.M.: ‘Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.)’, Protoplasma, 2015, 252, (4), pp. 10311046.
    29. 29)
      • 23. Das, V.L., Thomas, R., Varghese, R.T., et al: ‘Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area’, 3 Biotech, 2014, 4, (2), pp. 121126.
    30. 30)
      • 15. Syed, S., Chinthala, P.: ‘Heavy metal detoxification by different Bacillus species isolated from solar salterns’, Scientifica, 2015, 2015, p. 2015.
    31. 31)
      • 27. Oves, M., Khan, M.S., Zaidi, A., et al: ‘Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles bio-fabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia’, PloS One, 2013, 8, (3), p. e59140.
    32. 32)
      • 2. Feizi, H., Pour, S.J., Rad, K.H.: ‘Biological response of muskmelon (Cucumis melo L.) to magnetic field and silver’, Nanoparticles, 2013, 3, (4), pp. 794804.
    33. 33)
      • 28. Vannini, C., Domingo, G., Onelli, E., et al: ‘Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings’, J. Plant Physiol., 2014, 171, (13), pp. 11421148.
    34. 34)
      • 18. Sathiyanarayanan, G., Kiran, G.S., Selvin, J.: ‘Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17’, Colloids Surf. B, Biointerfaces, 2013, 102, pp. 1320.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0304
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0304
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address