http://iet.metastore.ingenta.com
1887

Biofabrication of silver nanoparticles using bacteria from mangrove swamp

Biofabrication of silver nanoparticles using bacteria from mangrove swamp

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The last decade has observed a rapid advancement in utilising biological system towards bioremediation of metal ions in the form of respective metal nanostructures or microstructures. The process may also be adopted for respective metal nanoparticle biofabrication. Among different biological methods, bacteria-mediated method is gaining great attention for nanoparticle fabrication due to their eco-friendly and cost-effective process. In the present study, silver nanoparticle (AgNP) was synthesised via continuous biofabrication using Aeromonas veronii, isolated from swamp wetland of Sunderban, West Bengal, India. The biofabricated AgNP was further purified to remove non-conjugated biomolecules using size exclusion chromatography, and the purified AgNPs were characterised using UV–visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy (TEM). Additionally, the presence of proteins as capping and stabilising agents was confirmed by the amide-I and amide-II peaks in the spectra obtained using attenuated total reflection Fourier transform infrared spectroscopy. The size of biofabricated AgNP was 10–20 nm, as observed using TEM. Additionally, biofabricated AgNP shows significant antibacterial potential against E. coli and S. aureus. Hence, biofabricated AgNP using Aeromonas veronii, which found resistant to a significant concentration of Ag ion, showed enhanced antimicrobial activity compared to commercially available AgNP.

Inspec keywords: biomedical materials; attenuated total reflection; proteins; microorganisms; X-ray diffraction; molecular biophysics; nanoparticles; nanomedicine; particle size; antibacterial activity; visible spectra; molecular configurations; field emission scanning electron microscopy; transmission electron microscopy; purification; biochemistry; silver; nanofabrication; chromatography; Fourier transform infrared spectra; ultraviolet spectra

Other keywords: bacteria-mediated method; silver nanoparticles; amide-II peaks; amide-I peaks; TEM; metal nanoparticle biofabrication; field emission scanning electron microscopy; nonconjugated biomolecules; size exclusion chromatography; attenuated total reflection Fourier transform infrared spectroscopy; S. aureus; transmission electron microscopy; antibacterial potential; Aeromonas veronii; microstructures; UV-visible spectroscopy; capping agents; X-ray diffraction; stabilising agents; E. coli; purification; swamp wetland; metal ions; biological methods; proteins; eco-friendly; size 10 nm to 20 nm; metal nanostructures; biological system; cost-effective process; antimicrobial activity; mangrove swamp; bioremediation; bacteria; Ag

Subjects: Infrared and Raman spectra in metals; Interactions with radiations at the biomolecular level; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Optical properties of metals and metallic alloys (thin films/low-dimensional structures); Biomedical materials; Infrared molecular spectra; Ultraviolet molecular spectra; Chromatography; Biomolecular interactions, charge transfer complexes; Visible and ultraviolet spectra of metals, semimetals, and alloys; Physical chemistry of biomolecular solutions and condensed states; Preparation of metals and alloys (compacts, pseudoalloys); Visible molecular spectra; Macromolecular configuration (bonds, dimensions); Low-dimensional structures: growth, structure and nonelectronic properties; Biomolecular structure, configuration, conformation, and active sites; Electronic structure and spectra of macromolecules; Nanotechnology applications in biomedicine

References

    1. 1)
      • 1. Thakkar, K.N., Mhatre, S.S., Parikh, R.Y.: ‘Biological synthesis of metallic nanoparticles’, Nanomed. Nanotechnol. Biol. Med., 2010, 6, (2), pp. 257262.
    2. 2)
      • 2. Panda, S., Yadav, K.K., Nayk, P.S., et al: ‘Screening of metal-resistant coal mine bacteria for biofabrication of elemental silver nanoparticle’, Bull. Mater. Sci., 2016, 39, (2), pp. 397404.
    3. 3)
      • 3. Arakha, M., Borah, S.M., Saleem, M., et al: ‘Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin’, Free Radical Biol. Med., 2016, 101, pp. 434445.
    4. 4)
      • 4. Arakha, M., Pal, S., Samantarrai, D., et al: ‘Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface’, Sci. Rep., 2015, 5, p. 14813.
    5. 5)
      • 5. Arakha, M., Saleem, M., Mallick, B.C., et al: ‘The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle’, Sci. Rep., 2015, 5, 09578.
    6. 6)
      • 6. Iravani, S.: ‘Bacteria in nanoparticle synthesis: current status and future prospectsInt Sch Res Notices2014, pp. 118.
    7. 7)
      • 7. Gil, P.R., Parak, W.J.: ‘Composite nanoparticles take aim at cancer’, ACS Nano, 2008, 2, (11), pp. 22002205.
    8. 8)
      • 8. Duncan, T.V.: ‘Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors’, J. Colloid Interface Sci., 2011, 363, (1), pp. 124.
    9. 9)
      • 9. Arakha, M., Roy, J., Nayak, P.S., et al: ‘Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic cell death’, Free Radical Biol. Med., 2017.
    10. 10)
      • 10. Nayak, P.S., Arakha, M., Kumar, A., et al: ‘An approach towards continuous production of silver nanoparticles using bacillus thuringiensis’, RSC Adv., 2016, 6, (10), pp. 82328242.
    11. 11)
      • 11. Xie, J., Lee, J.Y., Wang, D.I., et al: ‘Silver nanoplates: from biological to biomimetic synthesis’, ACS Nano, 2007, 1, (5), pp. 429439.
    12. 12)
      • 12. Sondi, I., Salopek-Sondi, B.: ‘Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for gram-negative bacteria’, J. Colloid Interface Sci., 2004, 275, (1), pp. 177182.
    13. 13)
      • 13. Zheng, K., Yuan, X., Goswami, N., et al: ‘Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters’, RSC Adv., 2014, 4, (105), pp. 6058160596.
    14. 14)
      • 14. Iranifam, M.: ‘Chemiluminescence reactions enhanced by silver nanoparticles and silver alloy nanoparticles: applications in analytical chemistry’, Trends Anal. Chem., 2016, 82, pp. 126142.
    15. 15)
      • 15. Lengke, M.F., Fleet, M.E., Southam, G.: ‘Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex’, Langmuir, 2007, 23, (5), pp. 26942699.
    16. 16)
      • 16. Basavaraja, S., Balaji, S.D., Lagashetty, A., et al: ‘Extracellular biosynthesis of silver nanoparticles using the fungus fusarium semitectum’, Mater. Res. Bull., 2008, 43, (5), pp. 11641170.
    17. 17)
      • 17. Xie, J., Lee, J.Y., Wang, D.I., et al: ‘Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions’, Small, 2007, 3, (4), pp. 672682.
    18. 18)
      • 18. Makarov, V.V., Love, A.J., Sinitsyna, O.V., et al: ‘‘Green’ nanotechnologies: synthesis of metal nanoparticles using plants’, Acta Naturae, 2014, 6, (1), pp. 3544.
    19. 19)
      • 19. Siddiqi, K.S., Husen, A.: ‘Fabrication of metal nanoparticles from fungi and metal salts: scope and application’, Nanoscale Res. Lett., 2016, 11, (1), p. 98.
    20. 20)
      • 20. Das, V.L., Thomas, R., Varghese, R.T., et al: ‘Extracellular synthesis of silver nanoparticles by the bacillus strain CS 11 isolated from industrialized area’, 3 Biotech, 2014, 4, (2), pp. 121126.
    21. 21)
      • 21. Yan, J.-K., Wang, Y.Y., Zhu, L., et al: ‘Green synthesis and characterization of zinc oxide nanoparticles using carboxylic curdlan and their interaction with bovine serum albumin’, RSC Adv., 2016, 6, (81), pp. 7775277759.
    22. 22)
      • 22. Fayaz, A.M., Balaji, K., Girilal, M., et al: ‘Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria’, Nanomed. Nanotech. Biol. Med., 2010, 6, (1), pp. 103109.
    23. 23)
      • 23. Gallardo, C., Monrás, J.P., Plaza, D.O., et al: ‘Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant antarctic bacteria’, J. Biotechnol., 2014, 187, pp. 108115.
    24. 24)
      • 24. Punjabi, K., Yedurkar, S., Doshi, S., et al: ‘Biosynthesis of silver nanoparticles by pseudomonas spp. Isolated from effluent of an electroplating industry’, IET Nanobiotechnol., 2017, 11, (5), pp. 584590.
    25. 25)
      • 25. Kulkarni, R.R., Shaiwale, N.S., Deobagkar, D.N., et al: ‘Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant deinococcus radiodurans, their characterization, and determination of bioactivity’, Int. J. Nanomed., 2015, 10, p. 963.
    26. 26)
      • 26. Prophet, E.B.: ‘Laboratory methods in histotechnology’ (Armed forces institute of pathology, Washington, 1992), pp. 1279.
    27. 27)
      • 27. Drancourt, M., Bollet, C., Carlioz, A., et al: ‘16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates’, J. Clin. Microbiol., 2000, 38, (10), pp. 36233630.
    28. 28)
      • 28. Igbinosa, I.H., Igumbor, E.U., Aghdasi, F., et al: ‘Emerging aeromonas species infections and their significance in public health’, Sci. World J., 2012, 2012, p. 625023.
    29. 29)
      • 29. Minana-Galbis, D., Farfan, M., Loren, J.G., et al: ‘Biochemical identification and numerical taxonomy of aeromonas spp. Isolated from environmental and clinical samples in Spain’, J. Appl. Microbiol., 2002, 93, (3), pp. 420430.
    30. 30)
      • 30. Arokiyaraj, S., Arasu, M.V., Vincent, S., et al: ‘Rapid green synthesis of silver nanoparticles from chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study’, Int. J. Nanomed., 2014, 9, p. 379.
    31. 31)
      • 31. Agnihotri, S., Mukherji, S., Mukherji, S.: ‘Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy’, RSC Adv., 2014, 4, (8), pp. 39743983.
    32. 32)
      • 32. Naik, R.R., Stringer, S.J., Agarwal, G., et al: ‘Biomimetic synthesis and patterning of silver nanoparticles’, Nature Mater., 2002, 1, (3), pp. 169172.
    33. 33)
      • 33. Peiris, M.K., Gunasekara, C.P., Jayaweera, P.M., et al: ‘Biosynthesized silver nanoparticles: are they effective antimicrobials?’, Memórias do Instituto Oswaldo Cruz, 2017, 112, (8), pp. 537543.
    34. 34)
      • 34. Narayanan, K.B., Sakthivel, N.: ‘Biological synthesis of metal nanoparticles by microbes’, Adv. Colloid Interface Sci., 2010, 156, (1), pp. 113.
    35. 35)
      • 35. Parab, H.J., Huang, J.H., Lai, T.C., et al: ‘Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake’, Nanotechnology, 2011, 22, (39), p. 395706.
    36. 36)
      • 36. Begam, J.N.: ‘Biosynthesis and characterization of silver nanoparticles (AgNPs) using marine bacteria against certain human pathogens’, Int. J. Adv. Sci. Res., 2016, 2, (7), pp. 152156.
    37. 37)
      • 37. Selvi, K.V., Sivakumar, T.: ‘Isolation and characterization of silver nanoparticles from fusarium oxysporum’, Int. J. Curr. Microbiol. Appl. Sci, 2012, 1, (1), pp. 5662.
    38. 38)
      • 38. Goswami, N., Zheng, K., Xie, J.: ‘Bio-NCs–the marriage of ultrasmall metal nanoclusters with biomolecules’, Nanoscale, 2014, 6, (22), pp. 1332813347.
    39. 39)
      • 39. Atta, A.M., Allohedan, H.A., Ezzat, A.O., et al: ‘Synthesis of dispersed and stabilized silver nanoparticles in acidic media’, Polym. Sci. Ser. B, 2014, 56, (6), pp. 762769.
    40. 40)
      • 40. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, (10), pp. 26382650.
    41. 41)
      • 41. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: ‘NIH Image to ImageJ: 25 years of image analysis’, Nature Methods, 2012, 9, pp. 671675.
    42. 42)
      • 42. Dar, M.A., Ingle, A., Rai, M.: ‘Enhanced antimicrobial activity of silver nanoparticles synthesized by cryphonectria sp. evaluated singly and in combination with antibiotics’, Nanomed. Nanotechnol. Biol. Med., 2013, 9, (1), pp. 105110.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0205
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0205
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address