http://iet.metastore.ingenta.com
1887

Cross-linking gold nanoparticles aggregation method based on localised surface plasmon resonance for quantitative detection of miR-155

Cross-linking gold nanoparticles aggregation method based on localised surface plasmon resonance for quantitative detection of miR-155

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

MiR-155 plays a critical role in the formation of cancers and other diseases. In this study, the authors aimed to design and fabricate a biosensor based on cross-linking gold nanoparticles (AuNPs) aggregation for the detection and quantification of miR-155. Also, they intended to compare this method with SYBR Green real-time polymerase chain reaction (PCR). Primers for real-time PCR, and two thiolated capture probes for biosensor, complementary with miR-155, were designed. Citrate capped AuNPs (18.7 ± 3.6 nm) were synthesised and thiolated capture probes immobilised to AuNPs. The various concentrations of synthetic miR-155 were measured by this biosensor and real-time PCR method. Colorimetric changes were studied, and the calibration curves were plotted. Results showed the detection limit of 10 nM for the fabricated biosensor and real-time PCR. Also, eye detection using colour showed the weaker detection limit (1 µM), for this biosensor. MiR-133b as the non-complementary target could not cause a change in both colour and UV–visible spectrum. The increase in hydrodynamic diameter and negative zeta potential of AuNPs after the addition of probes verified the biosensor accurately fabricated. This fabricated biosensor could detect miR-155 simpler and faster than previous methods.

Inspec keywords: aggregation; ultraviolet spectra; surface plasmon resonance; nanoparticles; RNA; hydrodynamics; electrokinetic effects; biochemistry; cancer; enzymes; molecular biophysics; nanosensors; nanofabrication; molecular configurations; calibration; biosensors; gold; visible spectra; eye

Other keywords: colorimetric changes; diseases; colour; miR-155 detection; thiolated capture probes; cancers; SYBR green real-time polymerase chain reaction; noncomplementary target; biosensor; miR-155 quantification; citrate capped AuNPs; negative zeta potential; Au; localised surface plasmon resonance; quantitative detection; cross-linking gold nanoparticles aggregation method; synthetic miR-155; eye detection; UV-visible spectrum; detection limit; calibration curves; real-time PCR method; MiR-133b; hydrodynamic diameter

Subjects: Ultraviolet molecular spectra; Micromechanical and nanomechanical devices and systems; Interactions with radiations at the biomolecular level; Measurement standards and calibration; Biomolecular structure, configuration, conformation, and active sites; Electrochemistry and electrophoresis; Sensing and detecting devices; Visible molecular spectra; Microsensors and nanosensors; Biosensors; Physical chemistry of biomolecular solutions and condensed states; Measurement standards and calibration; Fabrication of MEMS and NEMS devices; Biomolecular interactions, charge transfer complexes; Biosensors; Electronic structure and spectra of macromolecules; Macromolecular configuration (bonds, dimensions)

References

    1. 1)
      • 1. Esteller, M.: ‘Non-coding RNAs in human disease’, Nat. Rev. Genet., 2011, 12, (12), pp. 861874.
    2. 2)
      • 2. Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al: ‘Circulating microRNAs as stable blood-based markers for cancer detection’, Proc. Natl. Acad. Sci. USA, 2008, 105, (30), pp. 1051310518.
    3. 3)
      • 3. Guay, C., Regazzi, R.: ‘Circulating microRNAs as novel biomarkers for diabetes mellitus’, Nat. Rev. Endocrinol, 2013, 9, (9), pp. 513521.
    4. 4)
      • 4. Wang, K., Zhang, S., Marzolf, B., et al: ‘Circulating microRNAs, potential biomarkers for drug-induced liver injury’, Proc. Natl. Acad. Sci. USA, 2009, 106, (11), pp. 44024407.
    5. 5)
      • 5. Van Huyen, J.P.D., Tible, M., Gay, A., et al: ‘MicroRNAs as non-invasive biomarkers of heart transplant rejection’, Eur. Heart. J, 2014, 35, (45), pp. 31943202.
    6. 6)
      • 6. Han, Z.-B., Zhong, L., Teng, M.-J., et al: ‘Identification of recurrence-related microRNAs in hepatocellular carcinoma following liver transplantation’, Mol. Oncol, 2012, 6, (4), pp. 445457.
    7. 7)
      • 7. Kasinski, A.L., Slack, F.J.: ‘MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy’, Nat. Rev. Cancer, 2011, 11, (12), pp. 849864.
    8. 8)
      • 8. Chen, Y., Gelfond, J.A., McManus, L.M., et al: ‘Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis’, BMC genomics, 2009, 10, (1), p. 407.
    9. 9)
      • 9. Tian, T., Wang, J., Zhou, X.: ‘A review: microRNA detection methods’, Org. Biomol. Chem, 2015, 13, (8), pp. 22262238.
    10. 10)
      • 10. Sepúlveda, B., Angelomé, P.C., Lechuga, L.M., et al: ‘LSPR-based nanobiosensors’, Nano Today, 2009, 4, (3), pp. 244251.
    11. 11)
      • 11. Howes, P.D., Chandrawati, R., Stevens, M.M.: ‘Colloidal nanoparticles as advanced biological sensors’, Science, 2014, 346, (6205), p. 1247390.
    12. 12)
      • 12. Mayer, K.M., Hafner, J.H.: ‘Localized surface plasmon resonance sensors’, Chem. Rev, 2011, 111, (6), pp. 38283857.
    13. 13)
      • 13. Anker, J.N., Hall, W.P., Lyandres, O., et al: ‘Biosensing with plasmonic nanosensors’, Nat. Mater, 2008, 7, (6), pp. 442453.
    14. 14)
      • 14. Chan, G.H., Zhao, J., Hicks, E.M., et al: ‘Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography’, Nano. Lett, 2007, 7, (7), pp. 19471952.
    15. 15)
      • 15. Chan, G.H., Zhao, J., Schatz, G.C., et al: ‘Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles’, J. Phys. Chem. A, 2008, 112, (36), p. 13958.
    16. 16)
      • 16. Li, N., Zhao, P., Astruc, D.: ‘Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity’, Angew. Chem. Int. Ed, 2014, 53, (7), pp. 17561789.
    17. 17)
      • 17. Xu, X., Daniel, W.L., Wei, W., et al: ‘Colorimetric Cu2 + detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry’, Small, 2010, 6, (5), pp. 623626.
    18. 18)
      • 18. Xia, F., Zuo, X., Yang, R., et al: ‘Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes’, Proc. Natl. Acad. Sci. USA, 2010, 107, (24), pp. 1083710841.
    19. 19)
      • 19. Lee, J.S., Han, M.S., Mirkin, C.A.: ‘Colorimetric detection of mercuric ion (Hg2 + ) in aqueous media using DNA-functionalized gold nanoparticles’, Angew. Chem. Int. Ed, 2007, 46, (22), pp. 40934096.
    20. 20)
      • 20. Tili, E., Michaille, J.-J., Wernicke, D., et al: ‘Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer’, Proc. Natl. Acad. Sci. USA, 2011, 108, (12), pp. 49084913.
    21. 21)
      • 21. Emami, T., Madani, R., Golchinfar, F, et al: ‘Comparison of gold nanoparticle conjugated secondary antibody with non-gold secondary antibody in an ELISA Kit model’, Monoclon. Antib. Immunodiagn. Immunother, 2015, 34, (5), pp. 366370.
    22. 22)
      • 22. Kimling, J., Maier, M., Okenve, B., et al: ‘Turkevich method for gold nanoparticle synthesis revisited’, J. Phys. Chem. B, 2006, 110, (32), pp. 1570015707.
    23. 23)
      • 23. Cordray, M.S., Amdahl, M., Richards-Kortum, R.R.: ‘Gold nanoparticle aggregation for quantification of oligonucleotides: optimization and increased dynamic range’, Anal. Biochem, 2012, 431, (2), pp. 99105.
    24. 24)
      • 24. Shi, R., Sun, Y.-H., Zhang, X.-H., et al: ‘Poly (T) adaptor RT-PCR’. Next-Generation MicroRNA Expression Profiling Technology: Methods and Protocols, 2012, pp. 5366.
    25. 25)
      • 25. Busk, P.K.: ‘A tool for design of primers for microRNA-specific quantitative RT-qPCR’, BMC bioinformatics, 2014, 15, (1), p. 29.
    26. 26)
      • 26. Haiss, W., Thanh, N.T., Aveyard, J., et al: ‘Determination of size and concentration of gold nanoparticles from UV − Vis spectra’, Anal. Chem, 2007, 79, (11), pp. 42154221.
    27. 27)
      • 27. Muangchuen, A., Chaumpluk, P., Suriyasomboon, A., et al: ‘Colorimetric detection of ehrlichia canis via nucleic acid hybridization in gold nano-colloids’, Sensors, 2014, 14, (8), pp. 1447214487.
    28. 28)
      • 28. Cai, M., Li, F., Zhang, Y., et al: ‘One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection’, Nano. Res, 2010, 3, (8), pp. 557563.
    29. 29)
      • 29. Liu, P., Yang, X., Sun, S., et al: ‘Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification’, Anal. Chem, 2013, 85, (16), pp. 76897695.
    30. 30)
      • 30. Schmittgen, T.D., Lee, E.J., Jiang, J., et al: ‘Real-time PCR quantification of precursor and mature microRNA’, Methods, 2008, 44, (1), pp. 3138.
    31. 31)
      • 31. Varkonyi-Gasic, E., Wu, R., Wood, M., et al: ‘Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs’, Plant Methods, 2007, 3, (1), p. 12.
    32. 32)
      • 32. Andreasen, D., Fog, J.U., Biggs, W., et al: ‘Improved microRNA quantification in total RNA from clinical samples’, Methods, 2010, 50, (4), pp. S6S9.
    33. 33)
      • 33. Balcells, I., Cirera, S., Busk, P.K.: ‘Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers’, BMC biotechnology, 2011, 11, (1), p. 70.
    34. 34)
      • 34. Baptista, P.V., Doria, G., Conde, J.: ‘Alloy metal nanoparticles for multicolor cancer diagnostics’, SPIE BiOS, 2011, 7909, pp. 79090K179090K10.
    35. 35)
      • 35. Zimbone, M., Baeri, P., Calcagno, L., et al: ‘Dynamic light scattering on bioconjugated laser generated gold nanoparticles’, PloS One, 2014, 9, (3), p. e89048.
    36. 36)
      • 36. Dai, Q., Liu, X., Coutts, J., et al: ‘A one-step highly sensitive method for DNA detection using dynamic light scattering’, J. Am. Chem. Soc, 2008, 130, (26), pp. 81388139.
    37. 37)
      • 37. Sato, K., Hosokawa, K., Maeda, M.: ‘Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization’, J. Am. Chem. Soc, 2003, 125, (27), pp. 81028103.
    38. 38)
      • 38. Fan, Y., Chen, X., Trigg, A.D., et al: ‘Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps’, J. Am. Chem. Soc, 2007, 129, (17), pp. 54375443.
    39. 39)
      • 39. Li, J., Schachermeyer, S., Wang, Y., et al: ‘Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals’, Anal. Chem, 2009, 81, (23), pp. 97239729.
    40. 40)
      • 40. Alhasan, A.H., Kim, D.Y., Daniel, W.L., et al: ‘Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid–gold nanoparticle conjugates’, Anal. Chem, 2012, 84, (9), pp. 41534160.
    41. 41)
      • 41. Elbehery, A.H., Azzazy, H.M.: ‘Nanoparticle-based detection of cancer-associated RNA’, Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol, 2014, 6, (4), pp. 384397.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0174
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0174
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address