Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design of binary subtractor using actin quantum cellular automata

Actin is a biological protein that provides support to the cellular structure and plays a crucial role in cytoskeletal and intra-cellular signalling events. Logic circuits can be designed with actin filaments with the help of actin quantum automata. The authors use a rule (4,27) to implement some novel designs of logic subtractor circuits on this automata to achieve the difference in two binary bits. Logic design of both half and full binary subtractors is proposed in this study. Actin-based quantum cellular automata can be used in different combinations of input to get optimised results from the circuits. The authors focus on consolidating the designs inside single automata block to generate output in a less number of timesteps and less overheads. The designs are simulated with Simulink and this way output is verified for these different design approaches. Reliability and fault-tolerance check is another interesting part of this study. To get a better idea of the optimisation achieved, the authors have also presented a comparative study between the proposed designs in terms of circuit size and efficiency. With all these parameters involved, this study explores opportunities for future implementation of unconventional computing in nano-scale and cost-effective bio-molecular networks.

References

    1. 1)
      • 5. Cantiello, H.F.: ‘Role of actin filament organization in cell volume and ion channel regulation’, J. Exp. Zool., 1997, 279, (5), pp. 425435.
    2. 2)
      • 21. Das, K., De, D.: ‘Characterization, test and logic synthesis of novel conservative and reversible logic gates for QCA’, Int. J. Nanosci., 2010, 09, (03), pp. 201214.
    3. 3)
      • 11. Lin, E.C., Cantiello, H.F.: ‘A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin’, Biophys. J., 1993, 65, (4), pp. 13711378.
    4. 4)
      • 19. Das, J.C., Debnath, B., De, D.: ‘Image steganography using quantum dot-cellular automata’, Quantum Matter, 2015, 4, (5), pp. 504517.
    5. 5)
      • 4. Schwab, A., Fabian, A., Hanley, P.J., et al: ‘Role of ion channels and transporters in cell migration’, Physiol. Rev., 2012, 92, (4), pp. 18651913.
    6. 6)
      • 18. Das, J.C., De, D.: ‘Reversible comparator design using quantum dot-cellular automata’, IETE J. Res., 2016, 62, (3), pp. 323330.
    7. 7)
      • 3. Tuszyński, J.A., Portet, S., Dixon, J.M., et al: ‘Ionic wave propagation along actin filaments’, Biophys. J., 2004, 86, (4), pp. 18901903.
    8. 8)
      • 15. Schuh, M.: ‘An actin-dependent mechanism for long-range vesicle transport’, Nature Cell Biol., 2011, 13, (12), pp. 14311436.
    9. 9)
      • 6. Adamatzky, A., Mayne, R.: ‘Actin automata: phenomenology and localizations’, Int. J. Bifurcation Chaos Appl. Sci. Eng., 2015, 25, (02), p. 1550030.
    10. 10)
      • 25. Graziano, M., Pulimeno, A., Wang, R., et al: ‘Process variability and electrostatic analysis of molecular QCA’, ACM J. Emerging Technol. Comput. Syst., 2015, 12, (2), p. 18.
    11. 11)
      • 27. Bhattacharjee, P., Das, K., De, M., et al: ‘Spice modeling and analysis for metal island ternary QCA logic device’. Information Systems Design and Intelligent Applications, 2015, pp. 3341.
    12. 12)
      • 24. Tsukerblat, B., Palii, A., Clemente-Juan, J.M.: ‘Self-trapping of charge polarized states in four-dot molecular quantum cellular automata: bi-electronic tetrameric mixed-valence species’, Pure Appl. Chem., 2015, 87, (3), pp. 271282.
    13. 13)
      • 1. Siccardi, S., Adamatzky, A.: ‘Actin quantum automata: communication and computation in molecular networks’, Nano Commun. Netw., 2015, 6, (1), pp. 1527.
    14. 14)
      • 31. De, D., Sadhu, T., Das, J.C.: ‘Bioprocess modeling and simulation of half subtractor using actin based quantum cellular automata’, Mater. Today: Proc., 2016, 3, (10), pp. 32763284.
    15. 15)
      • 26. Kumar, A., Ghosh, B., Salimath, A.: ‘Optimum sizing of magnetic cell in magnetic quantum dot cellular automata’, Quantum Matter, 2015, 4, (6), pp. 570576.
    16. 16)
      • 22. Das, J.C., De, D.: ‘User authentication based on quantum-dot cellular automata using reversible logic for secure nanocommunication’, Arab. J. Sci. Eng., 2016, 41, (3), pp. 773784.
    17. 17)
      • 16. Mayne, R., Adamatzky, A.: ‘On the computing potential of intracellular vesicles’, PLOS ONE, 2015, 10, (10), p. e0139617.
    18. 18)
      • 17. Lloyd, S.: ‘Quantum computation’, Quantum information with continuous variables, Phys. Rev. Lett., 1999, 82, (8), p. 1784.
    19. 19)
      • 9. Mayne, R., Adamatzky, A., Jones, J.: ‘On the role of the plasmodial cytoskeleton in facilitating intelligent behaviour in slime mould Physarum polycephalum’, arXiv preprint arXiv:150303012, 2015.
    20. 20)
      • 10. Mayne, R., Adamatzky, A.: ‘The Physarum polycephalum actin network: formalisation, topology and morphological correlates with computational ability’. Proc. 8th Int. Conf. Bioinspired Information and Communications Technologies (ICST – Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2014. pp. 8794.
    21. 21)
      • 8. Lahoz-Beltra, R., Hameroff, S.R., Dayhoff, J.E.: ‘Cytoskeletal logic: a model for molecular computation via Boolean operations in microtubules and microtubule-associated proteins’, Biosystems, 1993, 29, (1), pp. 123.
    22. 22)
      • 23. Das, K., De, D.: ‘A novel approach of and-or-inverter (AOI) gate design for QCA’. 4th Int. Conf. Computers and Devices for Communication, 2009. CODEC 2009. IEEE, 2009, pp. 14.
    23. 23)
      • 20. Das, J.C., De, D.: ‘Reversible binary to grey and grey to binary code converter using QCA’, IETE J. Res., 2015, 61, (3), pp. 223229.
    24. 24)
      • 30. Inokuchi, S., Mizoguchi, Y.: ‘Generalized partitioned quantum cellular automata and quantization of classical CA’, arXiv preprint quant-ph/0312102, 2003.
    25. 25)
      • 28. Adamatzky, A.: ‘Advances in physarum machines gates, hulls, mazes and routing with slime mould’. PARCO, 2011, pp. 41–54.
    26. 26)
      • 7. Adamatzky, A., editor: ‘Collision-based computing’ (Springer, London, 2002).
    27. 27)
      • 2. Povarova, O.I., Sulatskaya, A.I., Kuznetsova, I.M., et al: ‘Actin folding, structure and function: is it a globular or an intrinsically disordered protein?’ (INTECH Open Access Publisher, Rijeka, Croatia, 2012).
    28. 28)
      • 29. Partner, H.L., Nigmatullin, R., Burgermeister, T., et al: ‘Structural phase transitions and topological defects in ion Coulomb crystals’, Physica B Condens. Matter, 2015, 460, pp. 114118.
    29. 29)
      • 13. Plankar, M., Brežan, S., Jerman, I.: ‘The principle of coherence in multi-level brain information processing’, Prog. Biophy. Mol. Biol., 2013, 111, (1), pp. 829.
    30. 30)
      • 12. De Loof, A., De Haes, W., Boerjan, B., et al: ‘The fading electricity theory of ageing: the missing biophysical principle?’, Ageing Res. Rev., 2013, 12, (1), pp. 5866.
    31. 31)
      • 14. Siccardi, S., Tuszynski, J.A., Adamatzky, A.: ‘Boolean gates on actin filaments’, Phys. Lett. A, 2016, 380, (1-2), pp. 8897.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0149
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0149
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address