Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Nano-biosensor based on reduced graphene oxide and gold nanoparticles, for detection of phenylketonuria-associated DNA mutation

Phenylketonuria (PKU)-associated DNA mutation in newborn children can be harmful to his health and early detection is the best way to inhibit consequences. A novel electrochemical nano-biosensor was developed for PKU detection, based on signal amplification using nanomaterials, e.g. gold nanoparticles (AuNPs) decorated on the reduced graphene oxide sheet on the screen-printed carbon electrode. The fabrication steps were checked by field emission scanning electron microscope imaging as well as cyclic voltammetry analysis. The specific alkanethiol single-stranded DNA probes were attached by self-assembly methodology on the AuNPs surface and Oracet blue was used as an intercalating electrochemical label. The results showed the detection limit of 21.3 fM and the dynamic range of 80–1200 fM. Moreover, the selectivity results represented a great specificity of the nano-biosensor for its specific target DNA oligo versus other non-specific sequences. The real sample simulation was performed successfully with almost no difference than a synthetic buffer solution environment.

References

    1. 1)
      • 44. Zhou, M., Zhai, Y., Dong, S.: ‘Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide’, Anal. Chem., 2009, 81, (14), pp. 56035613.
    2. 2)
      • 48. Huang, K.-J., Niu, D.-J., Liu, X., et al: ‘Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor’, Electrochim. Acta, 2011, 56, (7), pp. 29472953.
    3. 3)
      • 28. Kurbanoglu, S., Dogan-Topal, B., Rodriguez, E.P., et al: ‘Advances in electrochemical DNA biosensors and their interaction mechanism with pharmaceuticals’, J. Electroanal. Chem., 2016, 775, pp. 826.
    4. 4)
      • 23. Abu-Salah, K.M., Ansari, A.A., Alrokayan, S.A.: ‘DNA-based applications in nanobiotechnology’, BioMed Res. Int., 2010, 2010.
    5. 5)
      • 6. Hosseini Mazinani, S., Koochmeshgi, J., Khazaee Koohpar, Z., et al: ‘Carrier detection of phenylketonuria in Iranian families by variable number tandem-repeat polymorphism analysis’, East. Mediterr. Health J., 2008, 14, (6), pp. 14451451.
    6. 6)
      • 33. Aghaei, F., Seifati, S.M., Nasirizadeh, N.: ‘Development of a DNA biosensor for the detection of phenylketonuria based on a screen-printed gold electrode and Hematoxylin’, Anal. Methods, 2017, 9, (6), pp. 966973.
    7. 7)
      • 30. Topkaya, S.N.: ‘Gelatin methacrylate (Gelma) mediated electrochemical DNA biosensor for DNA hybridization’, Biosens. Bioelectron., 2015, 64, pp. 456461.
    8. 8)
      • 45. Qian, T., Yu, C., Zhou, X., et al: ‘Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitive dopamine detection’, Sens. Actuators B, Chem., 2014, 193, pp. 759763.
    9. 9)
      • 18. Nasirizadeh, N., Zare, H.R., Pournaghi-Azar, M.H., et al: ‘Introduction of hematoxylin as an electroactive label for DNA biosensors and its employment in detection of target DNA sequence and single-base mismatch in human papilloma virus corresponding to oligonucleotide’, Biosens. Bioelectron., 2011, 26, (5), pp. 26382644.
    10. 10)
      • 29. Diculescu, V.C., Chiorcea-Paquim, A.M., Oliveira-Brett, A.M.: ‘Applications of a DNA-electrochemical biosensor’, TrAC – Trends Anal. Chem., 2016, 79, pp. 2336.
    11. 11)
      • 8. Kalaydjieva, L., Dworniczak, B., Kucinskas, V., et al: ‘Geographical distribution gradients of the major Pku mutations and the linked haplotypes’, Hum. Genet., 1991, 86, (4), pp. 411413.
    12. 12)
      • 32. Topkaya, S.N., Ozkan-Ariksoysal, D., Kosova, B., et al: ‘Electrochemical DNA biosensor for detecting cancer biomarker related to glutathione S-transferase P1 (Gstp1) hypermethylation in real samples’, Biosens. Bioelectron., 2012, 31, (1), pp. 516522.
    13. 13)
      • 26. Wang, L., Xiong, Q., Xiao, F., et al: ‘2d nanomaterials based electrochemical biosensors for cancer diagnosis’, Biosens. Bioelectron., 2017, 89, pp. 136151.
    14. 14)
      • 36. Drummond, T.G., Hill, M.G., Barton, J.K.: ‘Electrochemical DNA sensors’, Nat. Biotechnol., 2003, 21, (10), pp. 11921199.
    15. 15)
      • 38. García-Mendiola, T., Cerro, M.R., López-Moreno, J.M., et al: ‘Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection’, Bioelectrochemistry, 2016, 111, pp. 115122.
    16. 16)
      • 34. Dey, M.K., Reddy, A.V.R., Satpati, A.K.: ‘Determination of melamine by a reduced graphene oxide–gold nanoparticle composite carbon paste electrode’, Anal. Lett., 2016, 49, (17), pp. 27032715.
    17. 17)
      • 19. Azimzadeh, M., Rahaie, M., Nasirizadeh, N., et al: ‘Application of oracet blue in a novel and sensitive electrochemical biosensor for the detection of microrna’, Anal. Methods, 2015, 7, (22), pp. 94959503.
    18. 18)
      • 39. Paleček, E., Fojta, M., Tomschik, M., et al: ‘Electrochemical biosensors for DNA hybridization and DNA damage’, Biosens. Bioelectron., 1998, 13, (6), pp. 621628.
    19. 19)
      • 13. Azimzadeh, M., Amiri, R., Bojd, E.D., et al: ‘Computer aided selection in breeding programs using genetic algorithm in Matlab program’, Span. J. Agric. Res., 2010, 8, (3), pp. 672678.
    20. 20)
      • 40. Wang, J., Rivas, G., Fernandes, J.R., et al: ‘Indicator-free electrochemical DNA hybridization biosensor’, Anal. Chim. Acta, 1998, 375, (3), pp. 197203.
    21. 21)
      • 35. Zhu, Y., Pan, D., Hu, X., et al: ‘An electrochemical sensor based on reduced graphene oxide/gold nanoparticles modified electrode for determination of iron in coastal waters’, Sens. Actuators B, Chem., 2017, 243, pp. 17.
    22. 22)
      • 22. Luo, X., Morrin, A., Killard, A.J., et al: ‘Application of nanoparticles in electrochemical sensors and biosensors’, Electroanalysis, 2006, 18, (4), pp. 319326.
    23. 23)
      • 24. Daneshpour, M., Omidfar, K., Ghanbarian, H.: ‘A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker Mirna-106a’, Beilstein J. Nanotechnol., 2016, 7, (1), pp. 20232036.
    24. 24)
      • 2. Groselj, U., Tansek, M.Z., Battelino, T.: ‘Fifty years of phenylketonuria newborn screening – a great success for many, but what about the rest?’, Mol. Genet. Metab., 2014, 113, (1), pp. 810.
    25. 25)
      • 43. Zuo, X., He, S., Li, D., et al: ‘Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces’, Langmuir, 2009, 26, (3), pp. 19361939.
    26. 26)
      • 21. Kerman, K., Saito, M., Tamiya, E., et al: ‘Nanomaterial-based electrochemical biosensors for medical applications’, TRAC Trends Anal. Chem., 2008, 27, (7), pp. 585592.
    27. 27)
      • 10. Blau, N.: ‘Genetics of phenylketonuria: then and now’, Hum. Mutat., 2016, 37, (6), pp. 508515.
    28. 28)
      • 51. Shakoori, Z., Salimian, S., Kharrazi, S., et al: ‘Electrochemical DNA biosensor based on gold nanorods for detecting hepatitis B virus’, Anal. Bioanal. Chem., 2015, 407, (2), pp. 455461.
    29. 29)
      • 15. Shojaei, S., Nasirizadeh, N., Entezam, M., et al: ‘An electrochemical nanosensor based on molecularly imprinted polymer (Mip) for detection of gallic acid in fruit juices’, Food Anal. Methods, 2016, 9, (10), pp. 111.
    30. 30)
      • 17. Nasirizadeh, N., Zare, H., Fakhari, A., et al: ‘A study of the electrochemical behavior of an oxadiazole derivative electrodeposited on multi-wall carbon nanotube-modified electrode and its application as a hydrazine sensor’, J. Solid State Electrochem., 2011, 11, (15), pp. 26832693.
    31. 31)
      • 25. Abu-Salah, K.M., Ansari, A.A., Alrokayan, S.A.: ‘DNA-Based Applications in Nanobiotechnology’, J. Biomed. Biotech., 2010, pp. 115, Doi:10.1155/2010/715295.
    32. 32)
      • 14. Azimzadeh, M., Rahaie, M., Nasirizadeh, N., et al: ‘An electrochemical nanobiosensor for plasma Mirna-155, based on graphene oxide and gold nanorod, for early detection of breast cancer’, Biosens. Bioelectron., 2016, 77, pp. 99106.
    33. 33)
      • 20. Chen, D., Feng, H., Li, J.: ‘Graphene oxide: preparation, functionalization, and electrochemical applications’, Chem. Rev., 2012, 112, (11), pp. 60276053.
    34. 34)
      • 27. Ranjan, R., Esimbekova, E.N., Kratasyuk, V.A.: ‘Rapid biosensing tools for cancer biomarkers’, Biosens. Bioelectron., 2017, 87, pp. 918930.
    35. 35)
      • 3. Williams, R.A., Mamotte, C.D., Burnett, J.R.: ‘Phenylketonuria: an inborn error of phenylalanine metabolism’, Clin. Biochem. Rev., 2008, 29, (1), p. 31.
    36. 36)
      • 12. Dehghani, M., Haghiralsadat, F., Azimzadeh, M., et al: ‘Association of glutathione S-transferase (Gstt1 and Gstm1) polymorphism with varicocele: an Iranian case–control study’, Int. J. Biosci. (IJB), 2014, 4, (5), pp. 146153.
    37. 37)
      • 31. Ratautaite, V., Topkaya, S.N., Mikoliunaite, L., et al: ‘Molecularly imprinted polypyrrole for DNA determination’, Electroanalysis, 2013, 25, (5), pp. 11691177.
    38. 38)
      • 11. Blau, N., Shen, N., Carducci, C.: ‘Molecular genetics and diagnosis of phenylketonuria: state of the art’, Expert Rev. Mol. Diagn., 2014, 14, (6), pp. 655671.
    39. 39)
      • 46. Yola, M.L., Eren, T., Atar, N.: ‘A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk’, Sens. Actuators B, Chem., 2015, 210, pp. 149157.
    40. 40)
      • 37. Wang, J.: ‘Electrochemical nucleic acid biosensors’, Anal. Chim. Acta, 2002, 469, (1), pp. 6371.
    41. 41)
      • 5. Dworniczak, B., Grudda, K., Stümper, J., et al: ‘Phenylalanine hydroxylase gene: novel missense mutation in exon 7 causing severe phenylketonuria’, Genomics, 1991, 9, (1), pp. 193199.
    42. 42)
      • 9. Guzzetta, V., Bonapace, G., Dianzani, I., et al: ‘Phenylketonuria in Italy: distinct distribution pattern of three mutations of the phenylalanine hydroxylase gene’, J. Inherit. Metab. Dis., 1997, 20, (5), pp. 619624.
    43. 43)
      • 7. Biglari, A., Saffari, F., Rashvand, Z., et al: ‘Mutations of the phenylalanine hydroxylase gene in Iranian patients with phenylketonuria’, SpringerPlus, 2015, 4, (1), p. 1.
    44. 44)
      • 16. Topkaya, S.N., Azimzadeh, M., Ozsoz, M.: ‘Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges’, Electroanalysis, 2016, 28, pp. 14021419.
    45. 45)
      • 4. Zare-Karizi, S., Hosseini-Mazinani, S., Khazaei-Koohpar, Z., et al: ‘Mutation spectrum of phenylketonuria in Iranian population’, Mol. Genet. Metab., 2011, 102, (1), pp. 2932.
    46. 46)
      • 1. Dobrowolski, S.F., Lyons-Weiler, J., Spridik, K., et al: ‘Altered DNA methylation in Pah deficient phenylketonuria’, Mol. Genet. Metab., 2015, 115, (2), pp. 7277.
    47. 47)
      • 50. Pumera, M.: ‘Graphene-based nanomaterials and their electrochemistry’, Chem. Soc. Rev., 2010, 39, (11), pp. 41464157.
    48. 48)
      • 41. Gooding, J.J.: ‘Electrochemical DNA hybridization biosensors’, Electroanalysis, 2002, 14, (17), pp. 11491156.
    49. 49)
      • 49. Yanez-Sedeno, P., Pingarron, J.: ‘Gold nanoparticle-based electrochemical biosensors’, Anal. Bioanal. Chem., 2005, 382, (4), pp. 884886.
    50. 50)
      • 42. Wang, J.: ‘Towards genoelectronics: electrochemical biosensing of DNA hybridization’, Chem. Eur. J., 1999, 5, (6), pp. 16811685.
    51. 51)
      • 47. Du, M., Yang, T., Jiao, K.: ‘Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film’, J. Mater. Chem., 2010, 20, (41), pp. 92539260.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0128
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0128
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address