access icon free Biosynthesis of Ag3PO4 nanoparticles in the absence of phosphate source using a phosphorus mineralising bacterium

Silver phosphate nanoparticles were biologically synthesised, for the first time, using a dilute silver nitrate solution as the silver ion supplier, and without any source of phosphate ion. The applied bacterium was Sporosarcina pasteurii formerly known as Bacillus pasteurii which is capable of solubilising phosphate from soils. It was speculated that the microbe accumulated phosphate from the organic source during the growth period, and then released it to deionised water. According to the transmission electron microscopy images and X-ray diffraction results, the produced nanoparticles were around 20 nm in size and identified as silver phosphate nanocrystals. The outcomes were also approved by energy-dispersive X-ray analysis, thermogravimetric and differential scanning calorimetry analyses, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy analysis. Finally, the antibacterial effect of the obtained nanoparticles was verified by testing them against Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. The activity of silver phosphate nanoparticles against gram-negative strains was better than the gram positives. It should be mentioned that the concentrations of 500 and 1000 mg/l were found to be strongly inhibitory for all of the strains.

Inspec keywords: Fourier transform infrared spectra; X-ray chemical analysis; transmission electron microscopy; antibacterial activity; silver compounds; visible spectra; differential scanning calorimetry; microorganisms; nanoparticles; X-ray diffraction; ultraviolet spectra; nanofabrication

Other keywords: Bacillus pasteurii; Bacillus cereus; energy-dispersive X-ray analysis; Salmonella typhimurium; differential scanning calorimetry analyses; silver phosphate nanoparticles; deionised water; Staphylococcus aureus; Ag3PO4; Sporosarcina pasteurii; Fourier transform infrared spectroscopy; phosphorus mineralising bacterium; antibacterial effect; X-ray diffraction; Escherichia coli; phosphate source; biosynthesis; ultraviolet–visible spectroscopy; thermogravimetric analyses; transmission electron microscopy images

Subjects: Visible and ultraviolet spectra of other nonmetals; Infrared and Raman spectra in inorganic crystals; Biomedical materials; Methods of nanofabrication and processing; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Electromagnetic radiation spectrometry (chemical analysis)

References

    1. 1)
      • 19. Kumar, S., Surendar, T., Shanker, V.: ‘Template-free and eco-friendly synthesis of hierarchical Ag3PO4 microcrystals with sharp corners and edges for enhanced photocatalytic activity under visible light’, Mater. Lett., 2014, 123, pp. 172175.
    2. 2)
      • 6. Beveridge, T., Meloche, J., Fyfe, W., et al: ‘Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments’, Appl. Environ. Microbiol., 1983, 45, (3), pp. 10941108.
    3. 3)
      • 46. Moreau, J.W., Weber, P.K., Martin, M.C., et al: ‘Extracellular proteins limit the dispersal of biogenic nanoparticles’, Science, 2007, 316, (5831), pp. 16001603.
    4. 4)
      • 48. Nguyen, T.-D., Dinh, C.-T., Do, T.-O.: ‘Monodisperse samarium and cerium orthovanadate nanocrystals and metal oxidation states on the nanocrystal surface’, Langmuir, 2009, 25, (18), pp. 1114211148.
    5. 5)
      • 5. Chi, R.-A., Xiao, C.-Q., Huang, X.-H., et al: ‘Bio-decomposition of rock phosphate containing pyrites by Acidithiobacillus ferrooxidans’, J. Cent. South Univ. Technol., 2007, 14, (2), pp. 170175.
    6. 6)
      • 2. Anand, K., Kumari, B., Mallick, M.: ‘Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers’, Int. J. Pharm. Pharm. Sci., 2016, 8, (2), pp. 3740.
    7. 7)
      • 37. Golub, E.E., Boesze-Battaglia, K.: ‘The role of alkaline phosphatase in mineralization’, Curr. Opin. Orthopaed., 2007, 18, (5), pp. 444448.
    8. 8)
      • 23. Dinh, C.-T., Nguyen, T.-D., Kleitz, F., et al: ‘Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity’, Chem. Commun., 2011, 47, (27), pp. 77977799.
    9. 9)
      • 41. Vala, A., Chudasama, B., Patel, R.: ‘Green synthesis of silver nanoparticles using marine-derived fungus Aspergillus niger’, Micro Nano Lett., 2012, 7, (8), pp. 859862.
    10. 10)
      • 27. Gogoi, N., Babu, P.J., Mahanta, C., et al:Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbor-tristis and in vitro investigation of their antibacterial and cytotoxic activities’, Mater. Sci. Eng.: C, 2015, 46, pp. 463469.
    11. 11)
      • 15. Dhand, V., Soumya, L., Bharadwaj, S., et al: ‘Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity’, Mater. Sci. Eng.: C, 2016, 58, pp. 3643.
    12. 12)
      • 28. Hyllested, J.ae., Palanco, M.E., Hagen, N., et al:Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents’, Beilstein J. Nanotechnol., 2015, 6, (1), pp. 293299.
    13. 13)
      • 34. Rodríguez, H., Fraga, R.: ‘Phosphate solubilizing bacteria and their role in plant growth promotion’, Biotechnol. Adv., 1999, 17, (4), pp. 319339.
    14. 14)
      • 24. Vu, T.A., Dao, C.D., Hoang, T.T., et al: ‘Study on synthesis and photocatalytic activity of novel visible light sensitive photocatalyst Ag3PO4’, Int. J. Nanotechnol., 2013, 10, (3-4), pp. 187196.
    15. 15)
      • 18. Umezawa, N., Shuxin, O., Ye, J.: ‘Theoretical study of high photocatalytic performance of Ag3PO4’, Phys. Rev. B, 2011, 83, (3), pp. 18.
    16. 16)
      • 14. Wei, X., Luo, M., Li, W., et al: ‘Synthesis of silver nanoparticles by solar irradiation of cell-free bacillus amyloliquefaciens extracts and AgNO3’, Bioresour. Technol., 2012, 103, (1), pp. 273278.
    17. 17)
      • 12. Priyadarshini, S., Gopinath, V., Priyadharsshini, N.M., et al: ‘Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application’, Colloids Surf. B Biointerfaces, 2013, 102, pp. 232237.
    18. 18)
      • 31. Singh, B., Satyanarayana, T.: ‘Microbial phytases in phosphorus acquisition and plant growth promotion’, Physiol. Mol. Biol. Plants, 2011, 17, (2), pp. 93103.
    19. 19)
      • 8. Velmurugan, P., Iydroose, M., Mohideen, M.H.A.K., et al: ‘Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity’, Bioprocess Biosyst. Eng., 2014, 37, (8), pp. 15271534.
    20. 20)
      • 45. Uvdal, K., Vikinge, T.: ‘Chemisorption of the dipeptide Arg-Cys on a gold surface and the selectivity of G-protein adsorption’, Langmuir, 2001, 17, (6), pp. 20082012.
    21. 21)
      • 4. Huang, T., Gong, W.-Q., Hu, C., et al: ‘Research on bioleaching of phosphorus from hematite with mixed bacteria’, J. Wuhan Univ. Technol., 2010, 13.
    22. 22)
      • 21. Wu, A., Tian, C., Chang, W., et al: ‘Morphology-controlled synthesis of Ag3PO4 nano/microcrystals and their antibacterial properties’, Mater. Res. Bull., 2013, 48, (9), pp. 30433048.
    23. 23)
      • 26. Elbeshehy, E.K., Elazzazy, A.M., Aggelis, G.: ‘Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens’, Front. Microbiol., 2015, 6.
    24. 24)
      • 43. Chen, G., Yi, B., Zeng, G., et al: ‘Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium’, Colloids Surf. B: Biointerfaces, 2014, 117, pp. 199205.
    25. 25)
      • 38. Li, X.-Z., Wu, K.-L., Dong, C., et al: ‘Size-controlled synthesis of Ag3PO4 nanorods and their high-performance photocatalysis for dye degradation under visible-light irradiation’, Mater. Lett., 2014, 130, pp. 97100.
    26. 26)
      • 13. Sagar, G., Ashok, B.: ‘Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens’, Eur. J. Exp. Biol., 2012, 2, (5), pp. 16541658.
    27. 27)
      • 17. Bi, Y., Ouyang, S., Umezawa, N., et al: ‘Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties’, J. Am. Chem. Soc., 2011, 133, (17), pp. 64906492.
    28. 28)
      • 11. Vithiya, K., Kumar, R., Sen, S.: ‘Bacillus sp. mediated extracellular synthesis of silver nanoparticles’, Int. J. Pharm. Pharm. Sci., 2014, 6, pp. 525527.
    29. 29)
      • 20. Chen, X.-j., Dai, Y.-z., Wang, X.-y., et al: ‘Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2, 4-dichlorophenol under visible light irradiation’, J. Hazard. Mater., 2015, 292, pp. 918.
    30. 30)
      • 32. Babalola, O.O.: ‘Beneficial bacteria of agricultural importance’, Biotechnol. Lett., 2010, 32, (11), pp. 15591570.
    31. 31)
      • 7. Lateef, A., Adelere, I., Gueguim-Kana, E., et al: ‘Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13’, Int. Nano Lett., 2014, 5, (1), pp. 2935.
    32. 32)
      • 44. Sankhla, A., Sharma, R., Yadav, R.S., et al: ‘Biosynthesis and characterization of cadmium sulfide nanoparticles – an emphasis of zeta potential behavior due to capping’, Mater. Chem. Phys., 2016, 170, pp. 4451.
    33. 33)
      • 29. Jo, J.H., Singh, P., Kim, Y.J., et al: ‘Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles’, Artif. Cells, Nanomed. Biotechnol., 2015, 44, (6), pp. 15761581.
    34. 34)
      • 39. Williamson, G., Hall, W.: ‘X-ray line broadening from filed aluminium and wolfram’, Acta Metall., 1953, 1, (1), pp. 2231.
    35. 35)
      • 9. El-Batal, A., Amin, M., Shehata, M.M., et al: ‘Synthesis of silver nanoparticles by Bacillus stearothermophilus using gamma radiation and their antimicrobial activity’, World Appl. Sci. J., 2013, 22, (1), pp. 116.
    36. 36)
      • 10. Javani, S., Marín, I., Amils, R., et al: ‘Four psychrophilic bacteria from Antarctica extracellularly biosynthesize at low temperature highly stable silver nanoparticles with outstanding antimicrobial activity’, Colloids Surf. A: Physicochem. Eng. Asp., 2015, 483, pp. 6069.
    37. 37)
      • 42. Nithya, R., Ragunathan, R.: ‘Synthesis of silver nanoparticles using a probiotic microbe and its antibacterial effect against multidrug resistant bacteria’, Afr. J. Biotechnol., 2012, 11, (49), pp. 1101311021.
    38. 38)
      • 1. Kumar, A., Prakash, A., Johri, B.: ‘Bacillus as PGPR in crop ecosystem’, in Maheshwari, Dinesh K. (Ed.): Bacteria in agrobiology: crop ecosystems (Springer, Berlin Heidelberg, 2011), pp. 3759.
    39. 39)
      • 51. Allafchian, A., Mirahmadi-Zare, S., Jalali, S., et al: ‘Green synthesis of silver nanoparticles using phlomis’, J. Nanostruct. Chem., 2016, 6, (2), pp. 129135.
    40. 40)
      • 49. Hosseini, M., Schaffie, M., Pazouki, M., et al: ‘A novel electrically enhanced biosynthesis of copper sulfide nanoparticles’, Mater. Sci. Semicond. Process., 2013, 16, (2), pp. 250255.
    41. 41)
      • 3. Mammadov, K.: ‘Dephosphorization of iron ore through bioleaching’. Master thesis, Universidade Federal de Santa Catarina, 2016.
    42. 42)
      • 36. Tao, G.-C., Tian, S.-J., Cai, M.-Y., et al: ‘Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils’, Pedosphere, 2008, 18, (4), pp. 515523.
    43. 43)
      • 22. Chudobova, D., Cihalova, K., Dostalova, S., et al: ‘Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection’, FEMS Microbiol. Lett., 2014, 351, (2), pp. 195201.
    44. 44)
      • 40. Hosseini, M.R., Sarvi, M.N.: ‘Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles’, Mater. Sci. Semicond. Process., 2015, 40, pp. 293301.
    45. 45)
      • 16. Meng, J., Zhao, S., Doyle, M.P., et al: ‘Antibiotic resistance of Escherichia coli O157:H7 and O157:NM isolated from animals, food, and humans’, J. Food Prot., 1998, 61, (11), pp. 15111514.
    46. 46)
      • 50. Shrivastava, S., Bera, T., Roy, A., et al: ‘Characterization of enhanced antibacterial effects of novel silver nanoparticles’, Nanotechnology, 2007, 18, (22), pp. 19.
    47. 47)
      • 33. Hayat, R., Ali, S., Amara, U., et al: ‘Soil beneficial bacteria and their role in plant growth promotion: a review’, Ann. Microbiol., 2010, 60, (4), pp. 579598.
    48. 48)
      • 25. Castro-Longoria, E., Vilchis-Nestor, A.R., Avalos-Borja, M.: ‘Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa’, Colloids Surf. B Biointerfaces, 2011, 83, (1), pp. 4248.
    49. 49)
      • 30. Waghmare, S.R., Mulla, M.N., Marathe, S.R., et al: ‘Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms’, 3 Biotech, 2015, 5, (1), pp. 3338.
    50. 50)
      • 35. Nagarajan, A.J., Irusappan, S., Amarnath, G., et al: ‘Expeditious synthesis of silver nanoparticles by a novel strain Sporosarcina pasteurii SRMNP1 and patrocladogram analysis for exploration of its closely related species’, Int. J. Sci. Res., 2014, 3, (2), pp. 6365.
    51. 51)
      • 47. Banu, A., Rathod, V., Ranganath, E.: ‘Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum Β-lactamase producing (ESBL) strains of enterobacteriaceae’, Mater. Res. Bull., 2011, 46, (9), pp. 14171423.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0121
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0121
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading